这篇文章主要介绍了C++怎么实现一个复数类,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
要求
实现⼀个复数类 Complex
。 Complex
类包括两个 double
类型的成员 real
和 image
,分别表示复数的实部和虚部。
对 Complex
类,重载其流提取、流插⼊运算符,以及加减乘除四则运算运算符。
重载流提取运算符 >>
,使之可以读⼊以下格式的输⼊(两个数值之间使⽤空⽩分隔),将第⼀个数值存为复数的实部,将第⼆个数值存为复数的虚部:
-1.1 2.0 +0 -4.5
重载流插⼊运算符 <<
,使之可以将复数输出为如下的格式⸺实部如果是⾮负数,则不输出符号位;输出时要包含半⻆左右⼩括号:
(-1.1+2.0i) (0-4.5i)
每次输⼊两个复数,每个复数均包括由空格分隔的两个浮点数,输⼊第⼀个复数后,键⼊回⻋,然后继续输⼊第⼆个复数。
输出两个复数,每个复数占⼀⾏;复数是由⼩括号包围的形如 (a+bi)
的格式。注意不能输出全⻆括号。
样例输⼊
-1.1 2.0 0 -4.5
样例输出
(-1.1+2i) (0-4.5i)(-1.1-2.5i)(-1.1+6.5i)(9+4.95i)(-0.444444-0.244444i)
提示
需要注意,复数的四则运算定义如下所示:
加法法则: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi) + (c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i减法法则: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a + bi) − (c + di) = (a − c) + (b − d)i (a+bi)−(c+di)=(a−c)+(b−d)i乘法法则: ( a + b i ) × ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a + bi) × (c + di) = (ac − bd) + (bc + ad)i (a+bi)×(c+di)=(ac−bd)+(bc+ad)i除法法则: ( a + b i ) ÷ ( c + d i ) = [ ( a c + b d ) / ( c 2 + d 2 ) ] + [ ( b c − a d ) / ( c 2 + d 2 ) ] i (a + bi) ÷ (c + di) = [(ac + bd)/(c^2 + d^2 )] + [(bc − ad)/(c^2 + d^2)]i (a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bc−ad)/(c2+d2)]i
两个流操作运算符必须重载为 Complex
类的友元函数
此外,在输出的时候,你需要判断复数的虚部是否⾮负⸺例如输⼊ 3 1.0
,那么输出应该为 3+1.0i
。这⾥向⼤家提供⼀种可能的处理⽅法:使⽤ ostream
提供的 setf()
函数 ⸺它可以设置数值输出的时候是否携带标志位。例如,对于以下代码:
ostream os;os.setf(std::ios::showpos);os << 12;
输出内容会是 +12
。
⽽如果想要取消前⾯的正号输出的话,你可以再执⾏:
os.unsetf(std::ios::showpos);
即可恢复默认的设置(不输出额外的正号)
代码实现
#include <iostream>using namespace std;const double EPISON = 1e-7;class Complex{private: double real; double image;public: Complex(const Complex& complex) :real{ complex.real }, image{ complex.image } { } Complex(double Real=0, double Image=0) :real{ Real }, image{ Image } { } //TODO Complex operator+(const Complex c) { return Complex(this->real + c.real, this->image + c.image); } Complex operator-(const Complex c) { return Complex(this->real - c.real, this->image - c.image); } Complex operator*(const Complex c) { double _real = this->real * c.real - this->image * c.image; double _image = this->image * c.real + this->real * c.image; return Complex(_real, _image); } Complex operator/(const Complex c) { double _real = (this->real * c.real + this->image * c.image) / (c.real * c.real + c.image * c.image); double _image = (this->image * c.real - this->real * c.image) / (c.real * c.real + c.image * c.image); return Complex(_real, _image); } friend istream &operator>>(istream &in, Complex &c); friend ostream &operator<<(ostream &out, const Complex &c);};//重载>>istream &operator>>(istream &in, Complex &c) { in >> c.real >> c.image; return in;}//重载<<ostream &operator<<(ostream &out, const Complex &c) { out << "("; //判断实部是否为正数或0 if (c.real >= EPISON || (c.real < EPISON && c.real > -EPISON)) out.unsetf(std::ios::showpos); out << c.real; out.setf(std::ios::showpos); out << c.image; out << "i)"; return out;}int main() { Complex z1, z2; cin >> z1; cin >> z2; cout << z1 << " " << z2 << endl; cout << z1 + z2 << endl; cout << z1 - z2 << endl; cout << z1*z2 << endl; cout << z1 / z2 << endl; return 0;}
感谢你能够认真阅读完这篇文章,希望小编分享的“C++怎么实现一个复数类”这篇文章对大家有帮助,同时也希望大家多多支持编程网,关注编程网行业资讯频道,更多相关知识等着你来学习!