文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Golang 中反射的应用实例详解

2024-04-02 19:55

关注

引言

首先来一段简单的代码逻辑热身,下面的代码大家觉得应该会打印什么呢?

type OKR struct {
   id      int
   content string
}
func getOkrDetail(ctx context.Context, okrId int) (*OKR, *okrErr.OkrErr) {
   return &OKR{id: okrId, content: fmt.Sprint(rand.Int63())}, nil
}
func getOkrDetailV2(ctx context.Context, okrId int) (*OKR, okrErr.OkrError) {
   if okrId == 2{
      return nil, okrErr.OKRNotFoundError
   }
   return &OKR{id: okrId, content: fmt.Sprint(rand.Int63())}, nil
}
func paperOkrId(ctx context.Context) (int, error){
   return 1, nil
}
func Test001(ctx context.Context) () {
   var okr *OKR
   okrId, err := paperOkrId(ctx)
   if err != nil{
      fmt.Println("####   111   ####")
   }
   okr, err = getOkrDetail(ctx, okrId)
   if err != nil {
      fmt.Println("####   222   ####")
   }
   okr, err = getOkrDetailV2(ctx, okrId)
   if err != nil {
      fmt.Println("####   333   ####")
   }
   okr, err = getOkrDetailV2(ctx, okrId + 1)
   if err != nil {
      fmt.Println("####   444   ####")
   }
   fmt.Println("####   555   ####")
   fmt.Printf("%v", okr)
}
func main() {
   Test001(context.Background())
}

Golang类型设计原则

在讲反射之前,先来看看 Golang 关于类型设计的一些原则

接下来要说的反射,就是能够在运行时更新变量和检查变量的值、调用变量的方法和变量支持的内在操作,而不需要在编译时就知道这些变量的具体类型。这种机制被称为反射。Golang 的基础类型是静态的(也就是指定 int、string 这些的变量,它的 type 是 static type),在创建变量的时候就已经确定,反射主要与 Golang 的 interface 类型相关(它的 type 是 concrete type),只有运行时 interface 类型才有反射一说。

Golang 中为什么要使用反射/什么场景可以(应该)使用反射

当程序运行时, 我们获取到一个 interface 变量, 程序应该如何知道当前变量的类型,和当前变量的值呢?

当然我们可以有预先定义好的指定类型, 但是如果有一个场景是我们需要编写一个函数,能够处理一类共性逻辑的场景,但是输入类型很多,或者根本不知道接收参数的类型是什么,或者可能是没约定好;

也可能是传入的类型很多,这些类型并不能统一表示。

这时反射就会用的上了,典型的例子如:json.Marshal。

再比如说有时候需要根据某些条件决定调用哪个函数,比如根据用户的输入来决定。这时就需要对函数和函数的参数进行反射,在运行期间动态地执行函数。

举例场景:

比如我们需要将一个 struct 执行某种操作(用格式化打印代替),这种场景下我们有多种方式可以实现,比较简单的方式是:switch case

func Sprint(x interface{}) string {
    type stringer interface {
        String() string
    }
    switch x := x.(type) {
    case stringer:
        return x.String()
    case string:
        return x
    case int:
        return strconv.Itoa(x)
    // int16, uint32...
    case bool:
        if x {
            return "true"
        }
        return "false"
    default:
        return "wrong parameter type"
    }
}
type permissionType int64

但是这种简单的方法存在一个问题, 当增加一个场景时,比如需要对 slice 支持,则需要在增加一个分支,这种增加是无穷无尽的,每当我需要支持一种类型,哪怕是自定义类型, 本质上是 int64 也仍然需要增加一个分支。

反射的基本用法

在 Golang 中为我们提供了两个方法,分别是 reflect.ValueOf  和 reflect.TypeOf,见名知意这两个方法分别能帮我们获取到对象的值和类型。Valueof 返回的是 Reflect.Value 对象,是一个 struct,而 typeof 返回的是 Reflect.Type 是一个接口。我们只需要简单的使用这两个进行组合就可以完成多种功能。

type GetOkrDetailResp struct {
   OkrId   int64
   UInfo   *UserInfo
   ObjList []*ObjInfo
}
type ObjInfo struct {
   ObjId int64
   Content string
}
type UserInfo struct {
   Name         string
   Age          int
   IsLeader     bool
   Salary       float64
   privateFiled int
}
// 利用反射创建struct
func NewUserInfoByReflect(req interface{})*UserInfo{
  if req == nil{
    return nil
  }
   reqType :=reflect.TypeOf(req)
  if reqType.Kind() == reflect.Ptr{
      reqType = reqType.Elem()
   }
   return reflect.New(reqType).Interface().(*UserInfo)
}
// 修改struct 字段值
func ModifyOkrDetailRespData(req interface{}) {
   reqValue :=reflect.ValueOf(req).Elem()
   fmt.Println(reqValue.CanSet())
   uType := reqValue.FieldByName("UInfo").Type().Elem()
   fmt.Println(uType)
   uInfo := reflect.New(uType)
   reqValue.FieldByName("UInfo").Set(uInfo)
}
// 读取 struct 字段值,并根据条件进行过滤
func FilterOkrRespData(reqData interface{}, objId int64){
// 首先获取req中obj slice 的value
for i := 0 ; i < reflect.ValueOf(reqData).Elem().NumField(); i++{
      fieldValue := reflect.ValueOf(reqData).Elem().Field(i)
if fieldValue.Kind() != reflect.Slice{
continue
      }
      fieldType := fieldValue.Type() // []*ObjInfo
      sliceType := fieldType.Elem() // *ObjInfo
      slicePtr := reflect.New(reflect.SliceOf(sliceType)) // 创建一个指向 slice 的指针
      slice := slicePtr.Elem()
      slice.Set(reflect.MakeSlice(reflect.SliceOf(sliceType), 0, 0))  // 将这个指针指向新创建slice
// 过滤所有objId == 当前objId 的struct
for i := 0 ;i < fieldValue.Len(); i++{
if fieldValue.Index(i).Elem().FieldByName("ObjId").Int() != objId {
continue
         }
         slice = reflect.Append(slice, fieldValue.Index(i))
      }
// 将resp 的当前字段设置为过滤后的slice
      fieldValue.Set(slice)
   }
}
func Test003(){
// 利用反射创建一个新的对象
var uInfo *UserInfo
   uInfo = NewUserInfoByReflect(uInfo)
   uInfo = NewUserInfoByReflect((*UserInfo)(nil))
// 修改resp 返回值里面的 user info 字段(初始化)
   reqData1 := new(GetOkrDetailResp)
   fmt.Println(reqData1.UInfo)
   ModifyOkrDetailRespData(reqData1)
   fmt.Println(reqData1.UInfo)
// 构建请求参数
   reqData := &GetOkrDetailResp{OkrId: 123}
   for i := 0; i < 10; i++{
      reqData.ObjList = append(reqData.ObjList, &ObjInfo{ObjId: int64(i), Content: fmt.Sprint(i)})
   }
// 输出过滤前结果
   fmt.Println(reqData)
// 对respData进行过滤操作
   FilterOkrRespData(reqData, 6)
// 输出过滤后结果
   fmt.Println(reqData)
}

反射的性能分析与优缺点

大家都或多或少听说过反射性能偏低,使用反射要比正常调用要低几倍到数十倍,不知道大家有没有思考过反射性能都低在哪些方面,我先做一个简单分析,通过反射在获取或者修改值内容时,多了几次内存引用,多绕了几次弯,肯定没有直接调用某个值来的迅速,这个是反射带来的固定性能损失,还有一方面的性能损失在于,结构体类型字段比较多时,要进行遍历匹配才能获取对应的内容。

下面就根据反射具体示例来分析性能:

测试反射结构体初始化

// 测试结构体初始化的反射性能
func Benchmark_Reflect_New(b *testing.B) {
   var tf *TestReflectField
   t := reflect.TypeOf(TestReflectField{})
   for i := 0; i < b.N; i++ {
      tf = reflect.New(t).Interface().(*TestReflectField)
   }
   _ = tf
}
// 测试结构体初始化的性能
func Benchmark_New(b *testing.B) {
   var tf *TestReflectField
   for i := 0; i < b.N; i++ {
      tf = new(TestReflectField)
   }
   _ = tf
}

运行结果:

可以看出,利用反射初始化结构体和直接使用创建 new 结构体是有性能差距的,但是差距不大,不到一倍的性能损耗,看起来对于性能来说损耗不是很大,可以接受。

测试结构体字段读取/赋值

// ---------    ------------  字段读  ----------- ----------- -----------
// 测试反射读取结构体字段值的性能
func Benchmark_Reflect_GetField(b *testing.B) {
   var tf = new(TestReflectField)
   var r int64
   temp := reflect.ValueOf(tf).Elem()
   for i := 0; i < b.N; i++ {
      r = temp.Field(1).Int()
   }
   _ = tf
   _ = r
}
// 测试反射读取结构体字段值的性能
func Benchmark_Reflect_GetFieldByName(b *testing.B) {
   var tf = new(TestReflectField)
   temp := reflect.ValueOf(tf).Elem()
   var r int64
   for i := 0; i < b.N; i++ {
      r = temp.FieldByName("Age").Int()
   }
   _ = tf
   _ = r
}
// 测试结构体字段读取数据的性能
func Benchmark_GetField(b *testing.B) {
   var tf = new(TestReflectField)
   tf.Age = 1995
   var r int
   for i := 0; i < b.N; i++ {
      r = tf.Age
   }
   _ = tf
   _ = r
}
// ---------    ------------  字段写  ----------- ----------- -----------
// 测试反射设置结构体字段的性能
func Benchmark_Reflect_Field(b *testing.B) {
   var tf = new(TestReflectField)
   temp := reflect.ValueOf(tf).Elem()
   for i := 0; i < b.N; i++ {
      temp.Field(1).SetInt(int64(25))
   }
   _ = tf
}
// 测试反射设置结构体字段的性能
func Benchmark_Reflect_FieldByName(b *testing.B) {
   var tf = new(TestReflectField)
   temp := reflect.ValueOf(tf).Elem()
   for i := 0; i < b.N; i++ {
      temp.FieldByName("Age").SetInt(int64(25))
   }
   _ = tf
}
// 测试结构体字段设置的性能
func Benchmark_Field(b *testing.B) {
   var tf = new(TestReflectField)
   for i := 0; i < b.N; i++ {
      tf.Age = i
   }
   _ = tf
}

测试结果:

从上面可以看出,通过反射进行 struct 字段读取耗时是直接读取耗时的百倍。直接对实例变量进行赋值每次 0.5 ns,性能是通过反射操作实例指定位置字段的10 倍左右。

使用 FieldByName("Age") 方法性能比使用 Field(1) 方法性能要低十倍左右,看代码的话我们会发现,FieldByName 是通过遍历匹配所有的字段,然后比对字段名称,来查询其在结构体中的位置,然后通过位置进行赋值,所以性能要比直接使用 Field(index) 低上很多。

建议:

测试结构体方法调用

// 测试通过结构体访问方法性能
func BenchmarkMethod(b *testing.B) {
   t := &TestReflectField{}
   for i := 0; i < b.N; i++ {
      t.Func0()
   }
}
// 测试通过序号反射访问无参数方法性能
func BenchmarkReflectMethod(b *testing.B) {
   v := reflect.ValueOf(&TestReflectField{})
   for i := 0; i < b.N; i++ {
      v.Method(0).Call(nil)
   }
}
// 测试通过名称反射访问无参数方法性能
func BenchmarkReflectMethodByName(b *testing.B) {
   v := reflect.ValueOf(&TestReflectField{})
   for i := 0; i < b.N; i++ {
      v.MethodByName("Func0").Call(nil)
   }
}
// 测试通过反射访问有参数方法性能
func BenchmarkReflectMethod_WithArgs(b *testing.B) {
   v := reflect.ValueOf(&TestReflectField{})
   for i := 0; i < b.N; i++ {
      v.Method(1).Call([]reflect.Value{reflect.ValueOf(i)})
   }
}
// 测试通过反射访问结构体参数方法性能
func BenchmarkReflectMethod_WithArgs_Mul(b *testing.B) {
   v := reflect.ValueOf(&TestReflectField{})
   for i := 0; i < b.N; i++ {
      v.Method(2).Call([]reflect.Value{reflect.ValueOf(TestReflectField{})})
   }
}
// 测试通过反射访问接口参数方法性能
func BenchmarkReflectMethod_WithArgs_Interface(b *testing.B) {
   v := reflect.ValueOf(&TestReflectField{})
   for i := 0; i < b.N; i++ {
      var tf TestInterface = &TestReflectField{}
      v.Method(3).Call([]reflect.Value{reflect.ValueOf(tf)})
   }
}
// 测试访问多参数方法性能
func BenchmarkMethod_WithManyArgs(b *testing.B) {
   s := &TestReflectField{}
   for i := 0; i < b.N; i++ {
      s.Func4(i, i, i, i, i, i)
   }
}
// 测试通过反射访问多参数方法性能
func BenchmarkReflectMethod_WithManyArgs(b *testing.B) {
   v := reflect.ValueOf(&TestReflectField{})
   va := make([]reflect.Value, 0)
   for i := 1; i <= 6; i++ {
      va = append(va, reflect.ValueOf(i))
   }
   for i := 0; i < b.N; i++ {
      v.Method(4).Call(va)
   }
}
// 测试访问有返回值的方法性能
func BenchmarkMethod_WithResp(b *testing.B) {
   s := &TestReflectField{}
   for i := 0; i < b.N; i++ {
      _ = s.Func5()
   }
}
// 测试通过反射访问有返回值的方法性能
func BenchmarkReflectMethod_WithResp(b *testing.B) {
   v := reflect.ValueOf(&TestReflectField{})
   for i := 0; i < b.N; i++ {
      _ = v.Method(5).Call(nil)[0].Int()
   }
}

这个测试结果同上面的分析相同

优缺点

优点:

缺点:

反射在 okr 中的简单应用

func OkrBaseMW(next endpoint.EndPoint) endpoint.EndPoint {
   return func(ctx context.Context, req interface{}) (resp interface{}, err error) {
      if req == nil {
         return next(ctx, req)
      }
      requestValue := reflect.ValueOf(req)
      // 若req为指针,则转换为非指针值
      if requestValue.Type().Kind() == reflect.Ptr {
         requestValue = requestValue.Elem()
      }
      // 若req的值不是一个struct,则不注入
      if requestValue.Type().Kind() != reflect.Struct {
         return next(ctx, req)
      }
      if requestValue.IsValid() {
         okrBaseValue := requestValue.FieldByName("OkrBase")
         if okrBaseValue.IsValid() &amp;&amp; okrBaseValue.Type().Kind() == reflect.Ptr {
            okrBase, ok := okrBaseValue.Interface().(*okrx.OkrBase)
            if ok {
               ctx = contextWithUserInfo(ctx, okrBase)
               ctx = contextWithLocaleInfo(ctx, okrBase)
               ctx = contextWithUserAgent(ctx, okrBase)
               ctx = contextWithCsrfToken(ctx, okrBase)
               ctx = contextWithReferer(ctx, okrBase)
               ctx = contextWithXForwardedFor(ctx, okrBase)
               ctx = contextWithHost(ctx, okrBase)
               ctx = contextWithURI(ctx, okrBase)
               ctx = contextWithSession(ctx, okrBase)
            }
         }
      }
      return next(ctx, req)
   }
}

结论

使用反射必定会导致性能下降,但是反射是一个强有力的工具,可以解决我们平时的很多问题,比如数据库映射、数据序列化、代码生成场景。

在使用反射的时候,我们需要避免一些性能过低的操作,例如使用 FieldByName() 和MethodByName() 方法,如果必须使用这些方法的时候,我们可以预先通过字段名或者方法名获取到对应的字段序号,然后使用性能较高的反射操作,以此提升使用反射的性能。

以上就是Golang 中反射的应用实例详解的详细内容,更多关于Golang 反射应用的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯