文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

MySQL中索引基础知识及使用规则

2020-03-29 16:58

关注

MySQL中索引基础知识及使用规则

InnoDB支持以下几种索引:

本文将着重介绍B+树索引。其他两个全文索引和哈希索引只是做简单介绍一笔带过。

哈希索引是自适应的,也就是说这个不能人为干预在一张表生成哈希索引,InnoDB会根据这张表的使用情况来自动生成。

全文索引是将存在数据库的整本书的任意内容信息查找出来的技术,InnoDB从1.2.x版本支持。每张表只能有一个全文检索的索引。

B+树索引是传统意义上的索引,B+树索引并不能根据键值找到具体的行数据,B+树索引只能找到行数据所在的页,然后通过把页读到内存,再在内存中查找到行数据。B+树索引也是最常用的最为频繁使用的索引。

前提

概念

  B+树是一种平衡查找树,其实先想想看为什么要用平衡查找树,不用二叉树?普通的二叉树可能因为插入的数据最后变成一个很长的链表,怎么能提高搜索的速度呢?你可以想想,为什么HashMap和ConcurrentHashMap在JDK8的时候,当链表大于8的时候把链表转成红黑树(红黑树也是平衡查找树)。技术思维是想通的,那么答案无非是加快速度,性能咯。

一个B+树有以下特征:

  那么我们先来看一个B+树的图

所有的数据都在叶子节点,且每一个叶子节点都带有指向下一个节点的指针,形成了一个有序的链表。为什么要有序呢?其实是为了范围查询。比如说select * from Table where id > 1 and id < 100; 当找到1后,只需顺着节点和指针顺序遍历就可以一次性访问到所有数据节点,极大提到了区间查询效率。是不是范围查询的话hash就搞不定这个事情了?以下为B+树的优势:

一般性情况,数据库的B+树的高度一般在2~4层,这就是说找到某一键值的行记录最多需要2到4次逻辑IO,相当于0.02到0.04s。

聚集索引(聚簇索引)

  聚集索引是按表的主键构造的B+树,叶子节点存放的为整张表的行记录数据,每张表只能有一个聚集索引。优化器更倾向采用聚集索引。因为直接就能获取行数据。

  请选择自增id来做主键,不要非空UK列。避免大量分页碎片。下面来看一个聚集索引的图:

​ 那么很简单了,每个叶子节点,都存有完整的行记录。对于主键的查找速度那是相当的快,美滋滋。

辅助索引

  辅助索引也叫非聚集索引,叶子节点除了键值以外还包含了一个bookmark,用来告诉InnoDB在哪里可以找到对应的行数据,InnoDB的辅助索引的bookmark就是相对应行数据的聚集索引键。也就是先获取指向主键索引的主键,然后通过主键索引来找到一个完整的行。如果辅助索引的树和聚集索引的树的高度都是3,如果不是走主键索引走辅助索引的话,那么需要6次逻辑IO访问得到最终的数据页。辅助索引和聚集索引的概念关系图如下:

基于主键索引和普通索引的查询有什么区别?

设计索引

  设计索引的时候,无论是组合索引还是普通索引等。一般经验是,选择经常被用来过滤记录的字段,高选择性,高区分性。别把性别字段设计索引,性别属于低选择性的。你可以选择名字嘛,你好我大名叫苗嘉杏:)

  知道加索引快,但是也别乱加索引,插入以及更新索引的操作InnoDB都会维护B+树的,多加很多索引只会导致效率降低!

  不要用重复的索引,比如有个联合索引是a,b,你又整个a列的普通索引。那不是搞事么?

  不要在索引上用函数和like

一颗聚集索引B+树可以放多少行数据?

  这里我们先假设B+树高为2,即存在一个根节点和若干个叶子节点,那么这棵B+树的存放总记录数为:根节点指针数*单个叶子节点记录行数。假设一行记录的数据大小为1k,那么单个叶子节点(页)中的记录数=16K/1K=16。

  那么现在我们需要计算出非叶子节点能存放多少指针,我们假设主键ID为bigint类型,长度为8字节,而指针大小在InnoDB源码中设置为6字节,这样一共14字节,我们一个页中能存放多少这样的单元,其实就代表有多少指针,页大小默认16K,即16kb/14b=1170。那么可以算出一棵高度为2的B+树,大概能存放1170*16=18720条这样的数据记录。

  根据同样的原理我们可以算出一个高度为3的B+树大概可以存放:1170*1170*16=21902400行数据。所以在InnoDB中B+树高度一般为1-3层,它就能满足千万级的数据存储。在查找数据时一次页的查找代表一次IO,所以通过主键索引查询通常只需要1-3次逻辑IO操作即可查找到数据。

Cardinality值

  如何判断一个索引建立的是否好呢?可以用show index from指令查看Cardinality值,这个值是一个预估值,而不是一个准确值。每次对Cardinality值的统计都是随机取8个叶子节点得到的。

  对于innodb来说,达到以下2点就会重新计算cardinality

  实际应用中,(Cardinality/行数)应该尽量接近1。如果非常小则要考虑是否需要此索引。实战一下,比如有一张表,我们来show index一下

mysql> show index from Order;
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table   | Non_unique | Key_name         | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Order   |          0 | PRIMARY          |            1 | id          | A         |       99552 |     NULL | NULL   |      | BTREE      |         |               |
| Order   |          1 | IDX_orderId      |            1 | orderId     | A         |       96697 |     NULL | NULL   |      | BTREE      |         |               |
| Order   |          1 | IDX_productId    |            1 | productId   | A         |          52 |     NULL | NULL   |      | BTREE      |         |               |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
rows in set (0.00 sec)

那么可以看到IDX_productId这个索引的Cardinality比较低。 

需要强制刷新Cardinality值的话可以用:

analyze local table xxx;

重建索引

重建普通索引

alter table T drop index k;

alter table T add index(k);

重建主键索引

可行:

    alter table T engine=InnoDB 

不可行:

    alter table T drop primary key;
    alter table T add primary key(id);

覆盖索引

ID为主键索引,k为普通索引.

如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的 值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是 说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为覆盖索引。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

最左前缀原则

B+ 树这种索引结构,可以利用索引的“最左前缀”,来定位 记录。

(name,age,sex)利用最左前缀可以实现以下的索引(name)(name,age)(name,age,sex))

在建立联合索引的时候,如何安 排索引内的字段顺序。

第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。

第二,考虑的原则就是空间

    比如:name 字段是比 age 字段大的 ,那我就建议你创建一个(name,age) 的联合索引和一个 (age) 的单字段 索引。这样比(age,name)(name)占用空间少

索引下推

联合索引(name, age)为例

mysql> select * from tuser where name like "张 %" and age=10 and ismale=1;

已经知道了最左前缀索引规则,所以这个语句在搜索索引树的时候,只能用索引name来搜索 “张”,age是没法用的,因为"zhang%"查询的是一个范围.

MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过 程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

用索引和用索引快速定位却别

前提

EXPLAIN SELECT id from mt4order WHERE Account like "1";

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE mt4order NULL range account索引,account_cmd索引 account索引 768 NULL 1 100.00 Using where; Using index

EXPLAIN SELECT id from mt4order WHERE Account like "1%";

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE mt4order NULL range account索引,account_cmd索引 account索引 768 NULL 1716 Using where; Using index,

EXPLAIN SELECT id from mt4order WHERE Account like "%1%";

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE mt4order NULL index NULL account索引 768 NULL 2649814 11.11 Using where; Using index

EXPLAIN SELECT id from mt4order WHERE Account like "%1";

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE mt4order NULL index NULL account索引 768 NULL 2649814 11.11 Using where; Using index

总结:

  1. 第一个使用account索引快速定位到一行数据,extra为Using where; Using index,说明优先使用索引中覆盖索引获取了id信息,避免了回表(使用索引,并且使用索引快速查找)
  2. 第二个使用account索引快速定位,但是因为后面包含一个%,所以按照最左前缀原则,对"1%"中的"1"进行索引快速查找,查询了1716行数据,extra为Using where; Using index,说明优先使用索引中覆盖索引获取了id信息,避免了回表 (使用索引,并且使用索引快速查找)
  3. 第三个有使用account索引,因为是"%1%"是范围查找,所以在account索引树上进行了全面的查找,扫描了2649814行数据,extra中为Using where; Using index,此时只是使用了索引和覆盖索引避免了回表,但是没有使用索引快速定位查找,因为基于account索引扫描了全部的行(使用索引,没有使用索引快速查找)
  4. 第四个有使用account索引,因为是"%1"是范围查找,所以在account索引树上进行了全面的查找,扫描了2649814行数据,extra中为Using where; Using index,此时只是使用了索引和覆盖索引避免了回表,但是没有使用索引快速定位查找,因为基于account索引扫描了全部的行(使用索引,没有使用索引快速查找)

前提条件

普通索引和唯一索引下的查询

普通索引和唯一索引下的更新

change buffer

使用change buffer

更新流程

change buffer使用场景

change buffer和 redo log

插入过程

查询过程

字符串字段增加索引的方式

  1. 直接创建完整索引,这样可能比较占用空间;
  2. 创建前缀索引,节省空间,但会增加查询扫描次数,并且不能使用覆盖索引;
  3. 倒序存储,再创建前缀索引,用于绕过字符串本身前缀的区分度不够的问题,不能使用覆盖索引,不支持范围扫描;
  4. 创建 hash 字段索引,查询性能稳定,有额外的存储和计算消耗,跟第三种方式一样,不能使用覆盖索引,都不支持范围扫描。

第一二种分析

完整索引和前缀索引的分析

你现在维护一个支持邮箱登录的系统,用户表是这么定义的:

mysql> create table SUser(
 ID bigint unsigned primary key, 
 email varchar(64),
 ...
 )engine=innodb;

由于要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:

mysql> select f1, f2 from SUser where email='xxx';

分别创建两种索引

mysql> alter table SUser add index index1(email); 
或
mysql> alter table SUser add index index2(email(6));

第一个语句创建的 index1 索引里面,包含了每个记录的整个字符串;
而第二个语句创建 的 index2 索引里面,对于每个记录都是只取前 6 个字节。
占用的空间会更小,这就是使用前缀索引的优势

加入执行下面的sql语句,两种索引该如何执行

select id,name,email from SUser where email='zhangssxyz@xxx.com';

完整索引

前缀索引

对比结果

使用前缀索引,如何确定应该使用多长的前缀

前缀索引对覆盖索引的影响

select id,email from SUser where email="zhangssxyz@xxx.com";

如果使用 index1(即 email 整个字符串的索引结构)的话,可以利用覆盖索引, 从 index1 查到结果后直接就返回了,不需要回到 ID 索引再去查一次。而如果使用 index2(即 email(6) 索引结构)的话,就不得不回到 ID 索引再去判断 email 字段的值。
即使你将 index2 的定义修改为 email(18) 的前缀索引,这时候虽然 index2 已经包含了 所有的信息,但 InnoDB 还是要回到 id 索引再查一下,因为系统并不确定前缀索引的定义 是否截断了完整信息。

结论: 前缀索引无法使用覆盖索引

其他方式使用前缀索引

比如,我们国家的身份证号,一共 18 位,其中前 6 位是地址码,所以同一个县的人的身 份证号前 6 位一般会是相同的。

假设你维护的数据库是一个市的公民信息系统,这时候如果对身份证号做长度为 6 的前缀 索引的话,这个索引的区分度就非常低了。

方法三: 使用倒序存储

方法四: 使用 hash 字段

第三种和第四种的异同点

相同点

不同点

现象

应该使用某个索引的时候,但是却使用了别的索引或者没有使用索引

优化器选择索引逻辑

索引选择异常和处理

1.条件字段做函数操作

①.现象

假设你现在维护了一个交易系统,其中交易记录表 tradelog 包含交易流水号 (tradeid)、交易员 id(operator)、交易时间(t_modified)等字段。为了便于描 述,我们先忽略其他字段。这个表的建表语句如下:

CREATE TABLE tradelog (

id int(11) NOT NULL,

tradeid varchar(32) DEFAULT NULL,

operator int(11) DEFAULT NULL,

t_modified datetime DEFAULT NULL,

PRIMARY KEY (id),

KEY tradeid (tradeid),
KEY t_modified (t_modified)

)ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

假设,现在已经记录了从 2016 年初到 2018 年底的所有数据,运营部门有一个需求是, 要统计发生在所有年份中 7 月份的交易记录总数。这个逻辑看上去并不复杂,你的 SQL 语句可能会这么写:

mysql> select count(*) from tradelog where month(t_modified)=7;

由于 t_modified 字段上有索引,于是你就很放心地在生产库中执行了这条语句,但却发现执行了特别久,才返回了结果。

如果你问 DBA 同事为什么会出现这样的情况,他大概会告诉你:如果对字段做了函数计 算,就用不上索引了,这是 MySQL 的规定。

②.原因

现在你已经学过了 InnoDB 的索引结构了,可以再追问一句为什么?为什么条件是 where t_modified="2018-7-1’的时候可以用上索引,而改成 where month(t_modified)=7 的时候就不行了?

下面是这个 t_modified 索引的示意图。方框上面的数字就是 month() 函数对应的值。

如果你的 SQL 语句条件用的是 where t_modified="2018-7-1’的话,引擎就会按照上面 绿色箭头的路线,快速定位到 t_modified="2018-7-1’需要的结果。

实际上,B+ 树提供的这个快速定位能力,来源于同一层兄弟节点的有序性。

但是,如果计算 month() 函数的话,你会看到传入 7 的时候,在树的第一层就不知道该怎 么办了。

也就是说,对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃 走树搜索功能。

需要注意的是,优化器并不是要放弃使用这个索引。

在这个例子里,放弃了树搜索功能,优化器可以选择遍历主键索引,也可以选择遍历索引 t_modified,优化器对比索引大小后发现,索引 t_modified 更小,遍历这个索引比遍历 主键索引来得更快。因此最终还是会选择索引 t_modified。

接下来,我们使用 explain 命令,查看一下这条 SQL 语句的执行结果。

key="t_modified"表示的是,使用了 t_modified 这个索引;我在测试表数据中插入了 10 万行数据,rows=100335,说明这条语句扫描了整个索引的所有值;Extra 字段的 Using index,表示的是使用了覆盖索引。

③.解决方法

由于在 t_modified 字段加了 month() 函数操作,导致了全索引扫描。为了能 够用上索引的快速定位能力,我们就要把 SQL 语句改成基于字段本身的范围查询。按照下 面这个写法,优化器就能按照我们预期的,用上 t_modified 索引的快速定位能力了。

select count(*) from tradelog where

(t_modified >= "2016-7-1" and t_modified<"2016-8-1") or

(t_modified >= "2017-7-1" and t_modified<"2017-8-1") or

(t_modified >= "2018-7-1" and t_modified<"2018-8-1");

当然,如果你的系统上线时间更早,或者后面又插入了之后年份的数据的话,你就需要再把其他年份补齐。

到这里我给你说明了,由于加了 month() 函数操作,MySQL 无法再使用索引快速定位功 能,而只能使用全索引扫描。

不过优化器在个问题上确实有“偷懒”行为,即使是对于不改变有序性的函数,也不会考虑使用索引。比如,对于 select * from tradelog where id + 1 = 10000 这个 SQL 语 句,这个加 1 操作并不会改变有序性,但是 MySQL 优化器还是不能用 id 索引快速定位 到 9999 这一行。所以,需要你在写 SQL 语句的时候,手动改写成 where id = 10000 -1 才可以。

2.隐式类型转换

①.隐式类型转换规则

我们一起看一下这条 SQL 语句:

mysql> select * from tradelog where tradeid=110717;

交易编号 tradeid 这个字段上,本来就有索引,但是 explain 的结果却显示,这条语句需 要走全表扫描。你可能也发现了,tradeid 的字段类型是 varchar(32),而输入的参数却是 整型,所以需要做类型转换。

那么,现在这里就有两个问题:

先来看第一个问题,你可能会说,数据库里面类型这么多,这种数据类型转换规则更多,
我记不住,应该怎么办呢?

这里有一个简单的方法,看 select “10” > 9 的结果:

  1. 如果规则是“将字符串转成数字”,那么就是做数字比较,结果应该是 1;
  2. 如果规则是“将数字转成字符串”,那么就是做字符串比较,结果应该是 0。

验证结果如图 3 所示。

从图中可知,select “10” > 9 返回的是 1,所以你就能确认 MySQL 里的转换规则了: 在 MySQL 中,字符串和数字做比较的话,是将字符串转换成数字。

②.原因

这时,你再看这个全表扫描的语句:

mysql> select * from tradelog where tradeid=110717;

就知道对于优化器来说,这个语句相当于:

mysql> select * from tradelog where CAST(tradid AS signed int) = 110717;

也就是说,这条语句触发了我们上面说到的规则:对索引字段做函数操作,优化器会放弃走树搜索功能。

3.隐式字符编码转换

①.现象

假设系统里还有另外一个表 trade_detail,用于记录交易的操作细节。为了便于量化分析和复现,我往交易日志表 tradelog 和交易详情表 trade_detail 这两个表里插入一些数 据。

mysql> CREATE TABLE trade_detail (

id int(11) NOT NULL,

tradeid varchar(32) DEFAULT NULL,

trade step int(11) DEFAULT NULL,

step_info varchar(32) DEFAULT NULL,

PRIMARY KEY (id),

KEY tradeid (tradeid)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

insert into tradelog values(1, "aaaaaaaa", 1000, now());

insert into tradelog values(2, "aaaaaaab", 1000, now());

insert into tradelog values(3, "aaaaaaac", 1000, now());

insert into trade_detail values(1, "aaaaaaaa", 1, "add");

insert into trade_detail values(2, "aaaaaaaa", 2, "update");
insert into trade_detail values(3, "aaaaaaaa", 3, "commit");
insert into trade_detail values(4, "aaaaaaab", 1, "add");
insert into trade_detail values(5, "aaaaaaab", 2, "update");
insert into trade_detail values(6, "aaaaaaab", 3, "update again");
insert into trade_detail values(7, "aaaaaaab", 4, "commit");
insert into trade_detail values(8, "aaaaaaac", 1, "add");
insert into trade_detail values(9, "aaaaaaac", 2, "update");
insert into trade_detail values(10, "aaaaaaac", 3, "update again");
insert into trade_detail values(11, "aaaaaaac", 4, "commit");

这时候,如果要查询 id=2 的交易的所有操作步骤信息,SQL 语句可以这么写:

mysql> select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2;

我们一起来看下这个结果:

在这个执行计划里,是从 tradelog 表中取 tradeid 字段,再去 trade_detail 表里查询匹 配字段。因此,我们把 tradelog 称为驱动表,把 trade_detail 称为被驱动表,把 tradeid 称为关联字段。

接下来,我们看下这个 explain 结果表示的执行流程:

图中得执行流程:

进行到这里,你会发现第 3 步不符合我们的预期。因为表 trade_detail 里 tradeid 字段上 是有索引的,我们本来是希望通过使用 tradeid 索引能够快速定位到等值的行。但,这里 并没有。

②.原因

如果你去问 DBA 同学,他们可能会告诉你,因为这两个表的字符集不同,一个是 utf8, 一个是 utf8mb4,所以做表连接查询的时候用不上关联字段的索引。这个回答,也是通常 你搜索这个问题时会得到的答案。

但是你应该再追问一下,为什么字符集不同就用不上索引呢? 我们说问题是出在执行步骤的第 3 步,如果单独把这一步改成 SQL 语句的话,那就是:

mysql> select * from trade_detail where tradeid=$L2.tradeid.value;

其中,$L2.tradeid.value 的字符集是 utf8mb4。

参照前面的两个例子,你肯定就想到了,字符集 utf8mb4 是 utf8 的超集,所以当这两个 类型的字符串在做比较的时候,MySQL 内部的操作是,先把 utf8 字符串转成 utf8mb4 字符集,再做比较。

这个设定很好理解,utf8mb4 是 utf8 的超集。类似地,在程序设计语言里 面,做自动类型转换的时候,为了避免数据在转换过程中由于截断导致数据 错误,也都是“按数据长度增加的方向”进行转换的。

因此, 在执行上面这个语句的时候,需要将被驱动数据表里的字段一个个地转换成 utf8mb4,再跟 L2 做比较。

也就是说,实际上这个语句等同于下面这个写法:

select * from trade_detail where CONVERT(traideid USING utf8mb4)=$L2.tradeid.value;

CONVERT() 函数,在这里的意思是把输入的字符串转成 utf8mb4 字符集。

这就再次触发了我们上面说到的原则:对索引字段做函数操作,优化器会放弃走树搜索功能。到这里,你终于明确了,字符集不同只是条件之一,连接过程中要求在被驱动表的索引字段上加函数操作,是直接导致对被驱动表做全表扫描的原因。

作为对比验证,我给你提另外一个需求,“查找 trade_detail 表里 id=4 的操作,对应的 操作者是谁”,再来看下这个语句和它的执行计划。

mysql>select l.operator from tradelog l , trade_detail d where d.tradeid=l.tradeid and d.id=4;

这个语句里 trade_detail 表成了驱动表,但是 explain 结果的第二行显示,这次的查询操 作用上了被驱动表 tradelog 里的索引 (tradeid),扫描行数是 1。

这也是两个 tradeid 字段的 join 操作,为什么这次能用上被驱动表的 tradeid 索引呢?我 们来分析一下。

假设驱动表 trade_detail 里 id=4 的行记为 R4,那么在连接的时候(图 5 的第 3 步), 被驱动表 tradelog 上执行的就是类似这样的 SQL 语句:

select operator from tradelog where traideid =$R4.tradeid.value;

这时候 $R4.tradeid.value 的字符集是 utf8, 按照字符集转换规则,要转成 utf8mb4,所 以这个过程就被改写成:

select operator from tradelog where traideid =CONVERT($R4.tradeid.value USING utf8mb4);

你看,这里的 CONVERT 函数是加在输入参数上的,这样就可以用上被驱动表的 traideid 索引。

③.解决方法

优化语句的方法:

select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2;

站在巨人的肩膀上摘苹果:

https://time.geekbang.org/column/intro/100020801
https://www.cnblogs.com/lonelyxmas/p/10668426.html

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯