背景
开始讨论弱引用( weakref )之前,我们先来看看什么是弱引用?它到底有什么作用?
假设我们有一个多线程程序,并发处理应用数据:
# 占用大量资源,创建销毁成本很高\
class Data:\
def __init__(self, key):\
pass
应用数据 Data 由一个 key 唯一标识,同一个数据可能被多个线程同时访问。由于 Data 需要占用很多系统资源,创建和消费的成本很高。我们希望 Data 在程序中只维护一个副本,就算被多个线程同时访问,也不想重复创建。
为此,我们尝试设计一个缓存中间件 Cacher :
import threading
# 数据缓存
class Cacher:
def __init__(self):
self.pool = {}
self.lock = threading.Lock()
def get(self, key):
with self.lock:
data = self.pool.get(key)
if data:
return data
self.pool[key] = data = Data(key)
return data
Cacher 内部用一个 dict 对象来缓存已创建的 Data 副本,并提供 get 方法用于获取应用数据 Data 。get 方法获取数据时先查缓存字典,如果数据已存在,便直接将其返回;如果数据不存在,则创建一个并保存到字典中。因此,数据首次被创建后就进入缓存字典,后续如有其它线程同时访问,使用的都是缓存中的同一个副本。
感觉非常不错!但美中不足的是:Cacher 有资源泄露的风险!
因为 Data 一旦被创建后,就保存在缓存字典中,永远都不会释放!换句话讲,程序的资源比如内存,会不断地增长,最终很有可能会爆掉。因此,我们希望一个数据等所有线程都不再访问后,能够自动释放。
我们可以在 Cacher 中维护数据的引用次数, get 方法自动累加这个计数。于此同时提供一个 remove 新方法用于释放数据,它先自减引用次数,并在引用次数降为零时将数据从缓存字段中删除。
线程调用 get 方法获取数据,数据用完后需要调用 remove 方法将其释放。Cacher 相当于自己也实现了一遍引用计数法,这也太麻烦了吧!Python 不是内置了垃圾回收机制吗?为什么应用程序还需要自行实现呢?
冲突的主要症结在于 Cacher 的缓存字典:它作为一个中间件,本身并不使用数据对象,因此理论上不应该对数据产生引用。那有什么黑科技能够在不产生引用的前提下,找到目标对象吗?我们知道,赋值都是会产生引用的!
典型用法
这时,弱引用( weakref )隆重登场了!弱引用是一种特殊的对象,能够在不产生引用的前提下,关联目标对象。
# 创建一个数据
>>> d = Data('fasionchan.com')
>>> d
<__main__.Data object at 0x1018571f0>
# 创建一个指向该数据的弱引用
>>> import weakref
>>> r = weakref.ref(d)
# 调用弱引用对象,即可找到指向的对象
>>> r()
<__main__.Data object at 0x1018571f0>
>>> r() is d
True
# 删除临时变量d,Data对象就没有其他引用了,它将被回收
>>> del d
# 再次调用弱引用对象,发现目标Data对象已经不在了(返回None)
>>> r()
这样一来,我们只需将 Cacher 缓存字典改成保存弱引用,问题便迎刃而解!
import threading
import weakref
# 数据缓存
class Cacher:
def __init__(self):
self.pool = {}
self.lock = threading.Lock()
def get(self, key):
with self.lock:
r = self.pool.get(key)
if r:
data = r()
if data:
return data
data = Data(key)
self.pool[key] = weakref.ref(data)
return data
由于缓存字典只保存 Data 对象的弱引用,因此 Cacher 不会影响 Data 对象的引用计数。当所有线程都用完数据后,引用计数就降为零因而被释放。
实际上,用字典缓存数据对象的做法很常用,为此 weakref 模块还提供了两种只保存弱引用的字典对象:
weakref.WeakKeyDictionary ,键只保存弱引用的映射类(一旦键不再有强引用,键值对条目将自动消失);
weakref.WeakValueDictionary ,值只保存弱引用的映射类(一旦值不再有强引用,键值对条目将自动消失);
因此,我们的数据缓存字典可以采用 weakref.WeakValueDictionary 来实现,它的接口跟普通字典完全一样。这样我们不用再自行维护弱引用对象,代码逻辑更加简洁明了:
import threading
import weakref
# 数据缓存
class Cacher:
def __init__(self):
self.pool = weakref.WeakValueDictionary()
self.lock = threading.Lock()
def get(self, key):
with self.lock:
data = self.pool.get(key)
if data:
return data
self.pool[key] = data = Data(key)
return data
weakref 模块还有很多好用的工具类和工具函数,具体细节请参考官方文档,这里不再赘述。
工作原理
那么,弱引用到底是何方神圣,为什么会有如此神奇的魔力呢?接下来,我们一起揭下它的面纱,一睹真容!
>>> d = Data('fasionchan.com')
# weakref.ref 是一个内置类型对象
>>> from weakref import ref
>>> ref
<class 'weakref'>
# 调用weakref.ref类型对象,创建了一个弱引用实例对象
>>> r = ref(d)
>>> r
<weakref at 0x1008d5b80; to 'Data' at 0x100873d60>
经过前面章节,我们对阅读内建对象源码已经轻车熟路了,相关源码文件如下:
Include/weakrefobject.h 头文件包含对象结构体和一些宏定义;
Objects/weakrefobject.c 源文件包含弱引用类型对象及其方法定义;
我们先扒一扒弱引用对象的字段结构,定义于 Include/weakrefobject.h 头文件中的第 10-41 行:
typedef struct _PyWeakReference PyWeakReference;
#ifndef Py_LIMITED_API
struct _PyWeakReference {
PyObject_HEAD
PyObject *wr_object;
PyObject *wr_callback;
Py_hash_t hash;
PyWeakReference *wr_prev;
PyWeakReference *wr_next;
};
#endif
由此可见,PyWeakReference 结构体便是弱引用对象的肉身。它是一个定长对象,除固定头部外还有 5 个字段:
wr_object ,对象指针,指向被引用对象,弱引用根据该字段可以找到被引用对象,但不会产生引用;
wr_callback ,指向一个可调用对象,当被引用的对象销毁时将被调用;
hash ,缓存被引用对象的哈希值;
wr_prev 和 wr_next 分别是前后向指针,用于将弱引用对象组织成双向链表;
结合代码中的注释,我们知道:
弱引用对象通过 wr_object 字段关联被引用的对象,如上图虚线箭头所示;
一个对象可以同时被多个弱引用对象关联,图中的 Data 实例对象被两个弱引用对象关联;
所有关联同一个对象的弱引用,被组织成一个双向链表,链表头保存在被引用对象中,如上图实线箭头所示;
当一个对象被销毁后,Python 将遍历它的弱引用链表,逐一处理:
将 wr_object 字段设为 None ,弱引用对象再被调用将返回 None ,调用者便知道对象已经被销毁了;
执行回调函数 wr_callback (如有);
由此可见,弱引用的工作原理其实就是设计模式中的 观察者模式( Observer )。当对象被销毁,它的所有弱引用对象都得到通知,并被妥善处理。
实现细节
掌握弱引用的基本原理,足以让我们将其用好。如果您对源码感兴趣,还可以再深入研究它的一些实现细节。
前面我们提到,对同一对象的所有弱引用,被组织成一个双向链表,链表头保存在对象中。由于能够创建弱引用的对象类型是多种多样的,很难由一个固定的结构体来表示。因此,Python 在类型对象中提供一个字段 tp_weaklistoffset ,记录弱引用链表头指针在实例对象中的偏移量。
由此一来,对于任意对象 o ,我们只需通过 ob_type 字段找到它的类型对象 t ,再根据 t 中的 tp_weaklistoffset 字段即可找到对象 o 的弱引用链表头。
Python 在 Include/objimpl.h 头文件中提供了两个宏定义:
#define PyType_SUPPORTS_WEAKREFS(t) ((t)->tp_weaklistoffset > 0)
#define PyObject_GET_WEAKREFS_LISTPTR(o) \
((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
PyType_SUPPORTS_WEAKREFS 用于判断类型对象是否支持弱引用,仅当 tp_weaklistoffset 大于零才支持弱引用,内置对象 list 等都不支持弱引用;
PyObject_GET_WEAKREFS_LISTPTR 用于取出一个对象的弱引用链表头,它先通过 Py_TYPE 宏找到类型对象 t ,再找通过 tp_weaklistoffset 字段确定偏移量,最后与对象地址相加即可得到链表头字段的地址;
我们创建弱引用时,需要调用弱引用类型对象 weakref 并将被引用对象 d 作为参数传进去。弱引用类型对象 weakref 是所有弱引用实例对象的类型,是一个全局唯一的类型对象,定义在 Objects/weakrefobject.c 中,即:_PyWeakref_RefType(第 350 行)。
根据对象模型中学到的知识,Python 调用一个对象时,执行的是其类型对象中的 tp_call 函数。因此,调用弱引用类型对象 weakref 时,执行的是 weakref 的类型对象,也就是 type 的 tp_call 函数。tp_call 函数则回过头来调用 weakref 的 tp_new 和 tp_init 函数,其中 tp_new 为实例对象分配内存,而 tp_init 则负责初始化实例对象。
回到 Objects/weakrefobject.c 源文件,可以看到 PyWeakref_RefType 的 tp_new 字段被初始化成 *weakref___new_* (第 276 行)。该函数的主要处理逻辑如下:
解析参数,得到被引用的对象(第 282 行);
调用 PyType_SUPPORTS_WEAKREFS 宏判断被引用的对象是否支持弱引用,不支持就抛异常(第 286 行);
调用 GET_WEAKREFS_LISTPTR 行取出对象的弱引用链表头字段,为方便插入返回的是一个二级指针(第 294 行);
调用 get_basic_refs 取出链表最前那个 callback 为空 基础弱引用对象(如有,第 295 行);
如果 callback 为空,而且对象存在 callback 为空的基础弱引用,则复用该实例直接将其返回(第 296 行);
如果不能复用,调用 tp_alloc 函数分配内存、完成字段初始化,并插到对象的弱引用链表(第 309 行);
如果 callback 为空,直接将其插入到链表最前面,方便后续复用(见第 4 点);
如果 callback 非空,将其插到基础弱引用对象(如有)之后,保证基础弱引用位于链表头,方便获取;
当一个对象被回收后,tp_dealloc 函数将调用 PyObject_ClearWeakRefs 函数对它的弱引用进行清理。该函数取出对象的弱引用链表,然后逐个遍历,清理 wr_object 字段并执行 wr_callback 回调函数(如有)。具体细节不再展开,有兴趣的话可以自行查阅 Objects/weakrefobject.c 中的源码,位于 880 行。
好了,经过本节学习,我们彻底掌握了弱引用相关知识。弱引用可以在不产生引用计数的前提下,对目标对象进行管理,常用于框架和中间件中。弱引用看起来很神奇,其实设计原理是非常简单的观察者模式。弱引用对象创建后便插到一个由目标对象维护的链表中,观察(订阅)对象的销毁事件。
以上就是Python中弱引用怎么使用的详细内容,更多请关注编程网其它相关文章!