一、背景
实际工作中会有一些耗时的异步任务需要使用定时调度,比如发送邮件,拉取数据,执行定时脚本
通过celery 实现调度主要思想是 通过引入中间人redis,启动 worker 进行任务执行 ,celery-beat进行定时任务数据存储
二、Celery动态添加定时任务的官方文档
celery文档:https://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html#beat-custom-schedulers
celery 自定义调度类说明:
自定义调度器类可以在命令行中指定(--scheduler参数)
django-celery-beat文档 : https://pypi.org/project/django-celery-beat/
关于django-celery-beat 插件的说明:
此扩展使您能够将定期任务计划存储在数据库中,可以从 Django 管理界面管理周期性任务,您可以在其中创建、编辑和删除周期性任务以及它们应该运行的频率
三、celery简单实用
3.1 基础环境配置
1. 安装最新版本的Django
pip3 install django #当前我安装的版本是 3.0.6
2. 创建项目
django-admin startproject typeidea
django-admin startapp blog
3.安装 celery
pip3 install django-celery
pip3 install -U Celery
pip3 install "celery[librabbitmq,redis,auth,msgpack]"
pip3 install django-celery-beat # 用于动态添加定时任务
pip3 install django-celery-results
pip3 install redis
3.2 测试使用Celery应用
1. 创建blog目录、新建task.py
首先在Django项目中创建一个blog文件夹,并且在blog文件夹下创建tasks.py模块, 如下:
tasks.py代码如下:
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
#File: tasks.py
#Time: 2022/3/30 2:26 下午
#Author: julius
"""
from celery import Celery
# 使用redis做为broker
app = Celery('blog.tasks2',broker='redis://127.0.0.1:6379/0')
# 创建任务函数
@app.task
def my_task():
print('任务正在执行...')
Celery第一个参数是给其设定一个名字, 第二参数我们设定一个中间人broker, 在这里我们使用Redis作为中间人。my_task函数是我们编写的一个任务函数, 通过加上装饰器app.task, 将其注册到broker的队列中。
2. 启动redis、创建worker
现在我们在创建一个worker, 等待处理队列中的任务。
进入项目的根目录,执行命令: celery -A celery_tasks.tasks worker -l info
3. 调用任务
下面来测试一下功能,创建一个任务,加入任务队列中,提供worker执行。
进入python终端, 执行如下代码:
$ python manage.py shell
>>> from blog.tasks import my_task
>>> my_task.delay()
<AsyncResult: 83484dfe-f729-417b-8e51-6c7ae32a1377>
调用一个任务函数,将会返回一个AsyncResult对象,这个对象可以用来检查任务的状态或者获得任务的返回值。
4. 查看结果
在worker的终端查看任务执行情况,可以看到已经收到83484dfe-f729-417b-8e51-6c7ae32a1377 任务,并打印了任务执行信息
5. 存储并查看任务执行状态
把任务执行结果赋值给ret,然后调用result() 会产生 DisabledBackend 报错,可见没有配置后端存储的时候并不能保存任务执行的状态信息,下一节我们会讲到如何配置backend保存任务执行结果
$ python manage.py shell
>>> from blog.tasks import my_task
>>> ret=my_task.delay()
>>> ret.result()
四、配置backend存储任务执行结果
如果我们想跟踪任务的状态,Celery需要将结果保存到某个地方。有几种保存的方案可选:SQLAlchemy、Django ORM、Memcached、 Redis、RPC (RabbitMQ/AMQP)。
1. 添加backend参数
在本例中我们使用Redis作为存储结果的方案,通过Celery的backend参数来设定任务结果存储地址。我们将tasks模块修改如下:
from celery import Celery
# 使用redis作为broker以及backend
app = Celery('celery_tasks.tasks',
broker='redis://127.0.0.1:6379/8',
backend='redis://127.0.0.1:6379/9')
# 创建任务函数
@app.task
def my_task(a, b):
print("任务函数正在执行....")
return a + b
给Celery增加了backend参数,指定redis作为结果存储,并将任务函数修改为两个参数,并且有返回值。
2. 调用任务/查看任务执行结果
下面再来执行调用一下这个任务看看。
$ python manage.py shell
>>> from blog.tasks import my_task
>>> res=my_task.delay(10,40)
>>> res.result
50
>>> res.failed()
False
再来看看worker的执行情况,如下:
可以看到celery任务已经执行成功了。
但是这只是一个开始,下一步要看看如何添加定时的任务。
四、优化Celery目录结构
上面直接将Celery的应用创建、配置、tasks任务全部写在了一个文件,这样在后面项目越来越大,也是不方便的。下面来拆分一下,并且添加一些常用的参数。
基本结构如下
$ vim typeidea/celery.py (Celery应用文件)
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
#File: celery.py
#Time: 2022/3/30 12:25 下午
#Author: julius
"""
import os
from celery import Celery
from blog import celeryconfig
project_name='typeidea'
# set the default django setting module for the 'celery' program
os.environ.setdefault('DJANGO_SETTINGS_MODULE','typeidea.settings')
app = Celery(project_name)
app.config_from_object('django.conf:settings')
app.autodiscover_tasks()
vim blog/celeryconfig.py (配置Celery的参数文件)
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
#File: celeryconfig.py
#Time: 2022/3/30 2:54 下午
#Author: julius
"""
# 设置结果存储
from typeidea import settings
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "typeidea.settings")
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0'
# 设置代理人broker
BROKER_URL = 'redis://127.0.0.1:6379/1'
# celery 的启动工作数量设置
CELERY_WORKER_CONCURRENCY = 20
# 任务预取功能,就是每个工作的进程/线程在获取任务的时候,会尽量多拿 n 个,以保证获取的通讯成本可以压缩。
CELERYD_PREFETCH_MULTIPLIER = 20
# 非常重要,有些情况下可以防止死锁
CELERYD_FORCE_EXECV = True
# celery 的 worker 执行多少个任务后进行重启操作
CELERY_WORKER_MAX_TASKS_PER_CHILD = 100
# 禁用所有速度限制,如果网络资源有限,不建议开足马力。
CELERY_DISABLE_RATE_LIMITS = True
CELERY_ENABLE_UTC = False
CELERY_TIMEZONE = settings.TIME_ZONE
DJANGO_CELERY_BEAT_TZ_AWARE = False
CELERY_BEAT_SCHEDULER = 'django_celery_beat.schedulers:DatabaseScheduler'
vim blog/tasks.py (tasks 任务文件)
import time
from blog.celery import app
# 创建任务函数
@app.task
def my_task(a, b, c):
print('任务正在执行...')
print('任务1函数休眠10s')
time.sleep(10)
return a + b + c
五、开始使用django-celery-beat调度器
使用 django-celery-beat 动态添加定时任务 celery 4.x 版本在 django 框架中是使用 django-celery-beat 进行动态添加定时任务的。前面虽然已经安装了这个库,但是还要再说明一下。
官网的配置说明
https://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html#beat-custom-schedulers
1. 安装 django-celery-beat
pip3 install django-celery-beat
2.在项目的 settings 文件配置 django-celery-beat
INSTALLED_APPS = [
'blog',
'django_celery_beat',
...
]
# Django设置时区
LANGUAGE_CODE = 'zh-hans' # 使用中国语言
TIME_ZONE = 'Asia/Shanghai' # 设置Django使用中国上海时间
# 如果USE_TZ设置为True时,Django会使用系统默认设置的时区,此时的TIME_ZONE不管有没有设置都不起作用
# 如果USE_TZ 设置为False,TIME_ZONE = 'Asia/Shanghai', 则使用上海的UTC时间。
USE_TZ = False
3. 创建 django-celery-beat 相关表
执行Django数据库迁移: python manage.py migrate
4. 配置Celery使用 django-celery-beat
配置 celery.py
import os
from celery import Celery
from blog import celeryconfig
# 为celery 设置环境变量
os.environ.setdefault("DJANGO_SETTINGS_MODULE","typeidea.settings")
# 创建celery app
app = Celery('blog')
# 从单独的配置模块中加载配置
app.config_from_object(celeryconfig)
# 设置app自动加载任务
app.autodiscover_tasks([
'blog',
])
配置 celeryconfig.py
# 设置结果存储
from typeidea import settings
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "typeidea.settings")
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0'
# 设置代理人broker
BROKER_URL = 'redis://127.0.0.1:6379/1'
# celery 的启动工作数量设置
CELERY_WORKER_CONCURRENCY = 20
# 任务预取功能,就是每个工作的进程/线程在获取任务的时候,会尽量多拿 n 个,以保证获取的通讯成本可以压缩。
CELERYD_PREFETCH_MULTIPLIER = 20
# 非常重要,有些情况下可以防止死锁
CELERYD_FORCE_EXECV = True
# celery 的 worker 执行多少个任务后进行重启操作
CELERY_WORKER_MAX_TASKS_PER_CHILD = 100
# 禁用所有速度限制,如果网络资源有限,不建议开足马力。
CELERY_DISABLE_RATE_LIMITS = True
CELERY_ENABLE_UTC = False
CELERY_TIMEZONE = settings.TIME_ZONE
DJANGO_CELERY_BEAT_TZ_AWARE = False
CELERY_BEAT_SCHEDULER = 'django_celery_beat.schedulers:DatabaseScheduler'
编写任务 tasks.py
import time
from celery import Celery
from blog.celery import app
# 使用redis做为broker
# app = Celery('blog.tasks2',broker='redis://127.0.0.1:6379/0',backend='redis://127.0.0.1:6379/1')
# 创建任务函数
@app.task
def my_task(a, b, c):
print('任务正在执行...')
print('任务1函数休眠10s')
time.sleep(10)
return a + b + c
@app.task
def my_task2():
print("任务2函数正在执行....")
print('任务2函数休眠10s')
time.sleep(10)
5. 启动定时任务work
启动定时任务首先需要有一个work执行异步任务,然后再启动一个定时器触发任务。
启动任务 work
$ celery -A blog worker -l info
启动定时器触发 beat
celery -A blog beat -l info --scheduler django_celery_beat.schedulers:DatabaseScheduler
六、具体操作演练
6.1 创建基于间隔时间的周期性任务
1. 初始化周期间隔对象interval
对象
>>> from django_celery_beat.models import PeriodicTask, IntervalSchedule
>>> schedule, created = IntervalSchedule.objects.get_or_create(
... every=10,
... period=IntervalSchedule.SECONDS,
... )
>>> IntervalSchedule.objects.all()
<QuerySet [<IntervalSchedule: every 10 seconds>]>
2.创建一个无参数的周期性间隔任务
>>>PeriodicTask.objects.create(interval=schedule,name='my_task2',task='blog.tasks.my_task2',)
<PeriodicTask: my_task2: every 10 seconds>
beat 调度服务日志显示如下:
worker 服务日志显示如下:
3.创建一个带参数的周期性间隔任务
>>> PeriodicTask.objects.create(interval=schedule,name='my_task',task='blog.tasks.my_task',args=json.dumps([10,20,30]))
<PeriodicTask: my_task: every 10 seconds>
beat 调度服务日志结果:
worker 服务日志结果:
4.如何高并发执行任务
需要并行执行任务的时候,就需要设置多个worker
来执行任务。
6.2 创建一个不带参数的周期性间隔任务
1.初始化 crontab
的调度对象
>>> import pytz
>>> schedule, _ = CrontabSchedule.objects.get_or_create(
... minute='*',
... hour='*',
... day_of_week='*',
... day_of_month='*',
... timezone=pytz.timezone('Asia/Shanghai')
... )
2. 创建不带参数的定时任务
PeriodicTask.objects.create(crontab=schedule,name='my_task2_crontab',task='blog.tasks.my_task2',)
beat 调度服务执行结果
worker 执行服务结果
6.3 周期性任务的查询、删除操作
1. 周期性任务的查询
>>> PeriodicTask.objects.all()
<ExtendedQuerySet [<PeriodicTask: celery.backend_cleanup: 0 4 * * * (m/h/dM/MY/d) Asia/Shanghai>, <PeriodicTask: my_task2_crontab: * * * * * (m/h/dM/MY/d) Asia/Shanghai>]>
>>> PeriodicTask.objects.get(name='my_task2_crontab')
<PeriodicTask: my_task2_crontab: * * * * * (m/h/dM/MY/d) Asia/Shanghai>
>>> for task in PeriodicTask.objects.all():
... print(task.id)
...
1
13
>>> PeriodicTask.objects.get(id=13)
<PeriodicTask: my_task2_crontab: * * * * * (m/h/dM/MY/d) Asia/Shanghai>
>>> PeriodicTask.objects.get(name='my_task2_crontab')
<PeriodicTask: my_task2_crontab: * * * * * (m/h/dM/MY/d) Asia/Shanghai>
控制台实际操作记录
2.周期性任务的暂停/启动
2.1 设置my_taks2_crontab 暂停任务
>>> my_task2_crontab = PeriodicTask.objects.get(id=13)
>>> my_task2_crontab.enabled
True
>>> my_task2_crontab.enabled=False
>>> my_task2_crontab.save()
查看worker输出:
可以看到worker从19:31以后已经没有输出了,说明已经成功吧my_task2_crontab 任务暂停
2.2 设置my_task2_crontab 开启任务
把任务的 enabled 为 True 即可:
>>> my_task2_crontab.enabled
False
>>> my_task2_crontab.enabled=True
>>> my_task2_crontab.save()
查看worker输出:
可以看到worker从19:36开始有输出,说明已把my_task2_crontab 任务重新启动
3. 周期性任务的删除
获取到指定的任务后调用delete(),再次查询指定任务会发现已经不存在了
PeriodicTask.objects.get(name='my_task2_crontab').delete()
>>> PeriodicTask.objects.get(name='my_task2_crontab')
Traceback (most recent call last):
File "<console>", line 1, in <module>
File "/Users/julius/PycharmProjects/typeidea/.venv/lib/python3.9/site-packages/django/db/models/manager.py", line 85, in manager_method
return getattr(self.get_queryset(), name)(*args, **kwargs)
File "/Users/julius/PycharmProjects/typeidea/.venv/lib/python3.9/site-packages/django/db/models/query.py", line 435, in get
raise self.model.DoesNotExist(
django_celery_beat.models.PeriodicTask.DoesNotExist: PeriodicTask matching query does not exist.
总结
到此这篇关于Python Celery动态添加定时任务生产实践的文章就介绍到这了,更多相关Celery动态添加定时任务内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!