文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

PyTorch dataloader中shuffle=True的示例分析

2023-06-15 03:48

关注

小编给大家分享一下PyTorch dataloader中shuffle=True的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

对shuffle=True的理解:

之前不了解shuffle的实际效果,假设有数据a,b,c,d,不知道batch_size=2后打乱,具体是如下哪一种情况:

先按顺序取batch,对batch内打乱,即先取a,b,a,b进行打乱;

先打乱,再取batch。

证明是第二种

shuffle (bool, optional): set to ``True`` to have the data reshuffled at every epoch (default: ``False``).if shuffle:    sampler = RandomSampler(dataset) #此时得到的是索引

补充:简单测试一下pytorch dataloader里的shuffle=True是如何工作的

看代码吧~

import sysimport torchimport randomimport argparseimport numpy as npimport pandas as pdimport torch.nn as nnfrom torch.nn import functional as Ffrom torch.optim import lr_schedulerfrom torchvision import datasets, transformsfrom torch.utils.data import TensorDataset, DataLoader, Dataset class DealDataset(Dataset):    def __init__(self):        xy = np.loadtxt(open('./iris.csv','rb'), delimiter=',', dtype=np.float32)        #data = pd.read_csv("iris.csv",header=None)        #xy = data.values        self.x_data = torch.from_numpy(xy[:, 0:-1])        self.y_data = torch.from_numpy(xy[:, [-1]])        self.len = xy.shape[0]        def __getitem__(self, index):        return self.x_data[index], self.y_data[index]     def __len__(self):        return self.len   dealDataset = DealDataset() train_loader2 = DataLoader(dataset=dealDataset,                          batch_size=2,                          shuffle=True)#print(dealDataset.x_data)for i, data in enumerate(train_loader2):    inputs, labels = data     #inputs, labels = Variable(inputs), Variable(labels)    print(inputs)    #print("epoch:", epoch, "的第" , i, "个inputs", inputs.data.size(), "labels", labels.data.size())

简易数据集

PyTorch dataloader中shuffle=True的示例分析PyTorch dataloader中shuffle=True的示例分析

shuffle之后的结果,每次都是随机打乱,然后分成大小为n的若干个mini-batch.

PyTorch dataloader中shuffle=True的示例分析

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

以上是“PyTorch dataloader中shuffle=True的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注编程网行业资讯频道!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯