文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

一小时学会TensorFlow2之基本操作1实例代码

2024-04-02 19:55

关注

概述

TensorFlow2 的基本操作和 Numpy 的操作很像. 今天带大家来看一看 TensorFlow 的基本数据操作.

在这里插入图片描述

创建数据

详细讲解一下 TensorFlow 创建数据的集中方法.

在这里插入图片描述

创建常量

tf.constant() 格式为:


tf.constant(value,dtype,shape,name)

参数:

例子:


# 创建常量1
c1 = tf.constant(1)
print(c1)

# 创建常量, 类型为bool
c2 = tf.constant([True, False])
print(c2)

# 创建常量1, 类型为float32, 大小为3*3
c3 = tf.constant(0.1, shape=[2, 2])
print(c3)

# 创建常量, 类型为string字符串
c4 = tf.constant("Hello World!")
print(c4)

输出结果:

tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor([ True False], shape=(2,), dtype=bool)
tf.Tensor(
[[0.1 0.1]
[0.1 0.1]], shape=(2, 2), dtype=float32)
tf.Tensor(b'Hello World!', shape=(), dtype=string)

创建数据序列

格式:


range(start, limit, delta=1, dtype=None, name='range')

参数:

例子:


# 创建数字序列
r1 = tf.range(4)
print(r1)

输出结果:

tf.Tensor([0 1 2 3], shape=(4,), dtype=int32)

创建图变量

格式:


tf.Variable.init(initial_value, trainable=True, collections=None, validate_shape=True, name=None)

参数:

参数名称 参数类型 参数含义
initial_value 所有可以转换为 Tensor 的类型 变量的初始值
trainable bool 如果为 True, 会把它加入到 GraphKeys.TRAINABLE_VARIABLES, 才能对它使用 Optimizer
collections list 指定该图变量的类型, 默认为 [GraphKeys.GLOBAL_VARIABLES]
validate_shape bool 如果为 False, 则不进行类型和维度检查
name string 数据名称

例子:


# 创建图变量
v1 = tf.Variable(tf.range(6))
print(v1)
print(isinstance(v1, tf.Tensor))  # False
print(isinstance(v1, tf.Variable))  # True
print(tf.is_tensor(v1))  # True

输出结果:

False
True
True

tf.zeros

tf.zeros 可以帮助我们创建一个所有参数为 0 的 tensor 对象. 类似于 np.zeros.

在这里插入图片描述

格式:


tf.zeros(shape, dtype=tf.dtypes.float32, name=None)

参数:

例子:


# 创建参数为0的tensor
z1 = tf.zeros([1])
print(z1)

z2 = tf.zeros([3, 3])
print(z2)

输出结果:

tf.Tensor([0.], shape=(1,), dtype=float32)
tf.Tensor(
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]], shape=(3, 3), dtype=float32)

tf.ones

tf.ones 用法和 tf.zeros 一样, 可以帮助我们创建一个所有参数为 1 的 tensor 对象.


tf.ones(shape, dtype=tf.dtypes.float32, name=None)

参数:

例子:


# 创建参数为1的tensor
o1 = tf.ones([1])
print(o1)

o2 = tf.ones([3, 3])
print(o2)

输出结果:

tf.Tensor([1.], shape=(1,), dtype=float32)
tf.Tensor(
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]], shape=(3, 3), dtype=float32)

tf.zeros_like

tf.zeros_like 可以帮我们创建一个与给定 tensor 类型大小一致的 tensor. 类似 np.zeros_like.

格式:


tf.zeros_like(tensor, dype=None, name=None)

参数:

例子:


# tf.zeros_like
t1 = tf.range(6)
z1 = tf.zeros_like(t1)
print(z1)

输出结果:

tf.Tensor([0 0 0 0 0 0], shape=(6,), dtype=int32)

tf.ones_like

格式:


tf.ones_like(tensor, dype=None, name=None)

参数:

例子:


# tf.ones_like
t1 = tf.range(6)
o1 = tf.ones_like(t1)
print(o1)

输出结果:

tf.Tensor([1 1 1 1 1 1], shape=(6,), dtype=int32)

tf.fill

tf.fill 可以帮助我们创建一个指定形状和内容的 tensor.

格式:


tf.fill(shape, value, name=None)

参数:

例子:


# tf.fill
f1 = tf.fill([2, 2], 0)
print(f1)

f2 = tf.fill([3, 3], 6)
print(f2)

输出结果:

[[0 0]
[0 0]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[6 6 6]
[6 6 6]
[6 6 6]], shape=(3, 3), dtype=int32)

tf.gather

tf.gather: 根据索引从参数轴收集切片.

格式:


tf.gather(
    params, indices, validate_indices=None, axis=None, batch_dims=0, name=None
)

参数:

例子:


input =[ [[[1, 1, 1], [2, 2, 2]],
         [[3, 3, 3], [4, 4, 4]],
         [[5, 5, 5], [6, 6, 6]]],
 
         [[[7, 7, 7], [8, 8, 8]],
         [[9, 9, 9], [10, 10, 10]],
         [[11, 11, 11], [12, 12, 12]]],
 
        [[[13, 13, 13], [14, 14, 14]],
         [[15, 15, 15], [16, 16, 16]],
         [[17, 17, 17], [18, 18, 18]]]
         ]
output=tf.gather(input, [0,2],axis=0)

输出结果:

tf.Tensor(
[[[[ 1 1 1]
[ 2 2 2]]

[[ 3 3 3]
[ 4 4 4]]

[[ 5 5 5]
[ 6 6 6]]]


[[[13 13 13]
[14 14 14]]

[[15 15 15]
[16 16 16]]

[[17 17 17]
[18 18 18]]]], shape=(2, 3, 2, 3), dtype=int32)

tf.random

在这里插入图片描述

正态分布

tf.random.normal 可以帮我们创建随机数服从正态分布.

格式:


tf.random.normal(
    shape, mean=0.0, stddev=1.0, dtype=tf.dtypes.float32, seed=None, name=None
)

参数:

例子:


# tf.normal
n1 = tf.random.normal([2, 2], mean = 1, stddev=1, seed=0)
print(n1)

输出结果:

tf.Tensor(
[[0.60084236 3.1044393 ]
[1.1710722 1.5465181 ]], shape=(2, 2), dtype=float32)

均匀分布

tf.random.uniform 可以帮我们创建随机数服从均匀分布.
格式:


tf.random.uniform(
    shape, minval=0, maxval=None, dtype=tf.dtypes.float32, seed=None, name=None
)

参数:

例子:


# tf.uniform
u1 = tf.random.uniform([2, 2], minval=0, maxval=1)
print(u1)

输出结果:

tf.Tensor(
[[0.7382153 0.6622821 ]
[0.22840345 0.09706533]], shape=(2, 2), dtype=float32)

打乱顺序

tf.random.shuffle 可以帮助我们打乱张量的顺序.

格式:


tf.random.shuffle(
    value, seed=None, name=None
)

参数:

例子:


# tf.shuffle
s1 = tf.random.shuffle(tf.range(10))
print(s1)

输出结果:

tf.Tensor([1 7 3 9 2 6 8 5 4 0], shape=(10,), dtype=int32)

获取数据信息

在这里插入图片描述

获取数据维度

tf.rank 的用法和 np.ndim 基本一样.

格式:


rank(input, name=None)  # 类似np.ndim

参数:

例子:


# 获取张量维度
t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
print(tf.rank(t))

输出结果:

tf.Tensor(3, shape=(), dtype=int32)

数据是否为张量

格式:


tf.is_tensor(input)

参数:

例子:


# 判断是否为张量
a = tf.constant([1, 2, 3])
b = tf.constant([True, False, False])
c = tf.constant("Hello World")
d = np.arange(6)

print(a)
print(tf.is_tensor(a))

print(b)
print(tf.is_tensor(b))

print(c)
print(tf.is_tensor(c))

print(d)
print(tf.is_tensor(d))

输出结果:

tf.Tensor([1 2 3], shape=(3,), dtype=int32)
True
tf.Tensor([ True False False], shape=(3,), dtype=bool)
True
tf.Tensor(b'Hello World', shape=(), dtype=string)
True
[0 1 2 3 4 5]
False

数据转换

在这里插入图片描述

转换成张量

格式:


tf.convert_to_tensor(value, dtype=None, dtype_hint=None, name=None)

参数:

例子:


# 转换成张量
array = np.arange(6)
print(array.dtype)

array_tf = tf.convert_to_tensor(array)
print(array_tf)

输出结果:

int32
tf.Tensor([0 1 2 3 4 5], shape=(6,), dtype=int32)

转换数据类型

格式:


cast(x, dtype, name=None)

参数:

例子:


# 装换数据类型
array_tf = tf.constant(np.arange(6))
print(array_tf)

array_tf = tf.cast(array_tf, dtype=tf.float32)
print(array_tf)

tf_bool = tf.cast(tf.constant([False, True]), dtype=tf.int32)
print(tf_bool)

输出结果:

tf.Tensor([0 1 2 3 4 5], shape=(6,), dtype=int32)
tf.Tensor([0. 1. 2. 3. 4. 5.], shape=(6,), dtype=float32)
tf.Tensor([0 1], shape=(2,), dtype=int32)

转换成 numpy

例子:


# tensor转换成numpy
array_tf = tf.ones([2,2])
array_np = array_tf.numpy()
print(array_np)

输出结果:

[[1. 1.]
[1. 1.]]

到此这篇关于一小时学会TensorFlow2之基本操作1的文章就介绍到这了,更多相关TensorFlow2基本操作内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯