程序并不能单独运行,只有将程序装载到内存中,系统为它分配资源才能运行,而这种执行的程序就称之为进程。程序和进程的区别就在于:程序是指令的集合,它是进程运行的静态描述文本;进程是程序的一次执行活动,属于动态概念。
进程只能在一个时间干一件事,如果想同时干两件事或多件事,进程就无能为力了。
进程在执行的过程中如果阻塞,例如等待输入,整个进程就会挂起,即使进程中有些工作不依赖于输入的数据,也将无法执行。
进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序 健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。
例子:
#!/usr/local/python27/bin/python2.7
# coding=utf8
# noinspection PyUnresolvedReferences
from
multiprocessing
import
Process
import
time
def
f(n):
time.sleep(
1
)
print
n
*
n
for
i
in
range
(
10
):
p
=
Process(target
=
f,args
=
[i,])
p.start()
在一般情况下多个进程的内存资源是相互独立的,而多线程可以共享同一个进程中的内存资源,示例代码:
#!/usr/local/python27/bin/python2.7
# coding=utf8
# noinspection PyUnresolvedReferences
# 通过多进程和多线程对比,进程间内存无法共享,线程间的内存共享
from multiprocessing import Process
import threading
import time
lock = threading.Lock()
def run(info_list,n):
lock.acquire()
info_list.append(n)
lock.release()
print('%s\n' % info_list)
info = []
for i in range(10):
'''target为子进程执行的函数,args为需要给函数传递的参数'''
p = Process(target=run,args=[info,i])
p.start()
'''这里是为了输出整齐让主进程的执行等一下子进程'''
time.sleep(1)
print('------------threading--------------')
for i in range(10):
p = threading.Thread(target=run,args=[info,i])
p.start()
进程间通信:
#!/usr/local/python27/bin/python2.7
# coding=utf8
# noinspection PyUnresolvedReferences
# 通过multiprocessing.Queue实现进程间内存共享
from multiprocessing import Process,Queue
import time
def write(q):
for i in ['A','B','C','D','E']:
print('Put %s to queue' % i)
q.put(i)
time.sleep(0.5)
def read(q):
while True:
v = q.get(True)
print('get %s from queue' %v)
if __name__ == '__main__':
q = Queue()
pw = Process(target=write,args=(q,))
pr = Process(target=read,args=(q,))
pw.start()
pr.start()
pr.join()
pr.terminate()
进程池:
#!/usr/local/python27/bin/python2.7
# coding=utf8
# noinspection PyUnresolvedReferences
from multiprocessing import Pool
import time
def f(x):
print x*x
time.sleep(2)
return x*x
'''定义启动的进程数量'''
pool = Pool(processes=5)
res_list = []
for i in range(10):
'''以异步并行的方式启动进程,如果要同步等待的方式,可以在每次启动进程之后调用res.get()方法,也可以使用Pool.apply'''
res = pool.apply_async(f,[i,])
print('-------:',i)
res_list.append(res)
pool.close()
pool.join()
for r in res_list:
print(r.get(timeout=5))