文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

【代码详解】nerf-pytorch代码逐行分析

2023-09-01 13:15

关注

目录

前言

要想看懂instant-ngp的cuda代码,需要先对NeRF系列有足够深入的了解,原始的NeRF版本是基于tensorflow的,今天读的是MIT博士生Yen-Chen Lin实现的pytorch版本的代码。
代码链接:https://github.com/yenchenlin/nerf-pytorch
因为代码量比较大,所以我们先使用一个思维导图对项目逻辑进行梳理,然后逐个文件解析。为了保持思路连贯,我们会一次贴上整个函数的内容并逐行注释,然后贴相关的公式和示意图到代码段的下方。
在这里插入图片描述

run_nerf.py

一切都从这个文件开始,让我们先来看看有哪些参数需要设置。

config_parser()

先是一些基本参数

    # 生成config.txt文件    parser.add_argument('--config', is_config_file=True,                         help='config file path')    # 指定实验名称    parser.add_argument("--expname", type=str,                         help='experiment name')    # 指定输出目录    parser.add_argument("--basedir", type=str, default='./logs/',                         help='where to store ckpts and logs')    # 指定数据目录    parser.add_argument("--datadir", type=str, default='./data/llff/fern',                         help='input data directory')

然后是一些训练相关的参数

    # training options    # 设置网络的深度,即网络的层数    parser.add_argument("--netdepth", type=int, default=8,                         help='layers in network')    # 设置网络的宽度,即每一层神经元的个数    parser.add_argument("--netwidth", type=int, default=256,                         help='channels per layer')    parser.add_argument("--netdepth_fine", type=int, default=8,                         help='layers in fine network')    parser.add_argument("--netwidth_fine", type=int, default=256,                         help='channels per layer in fine network')    # batch size,光束的数量    parser.add_argument("--N_rand", type=int, default=32*32*4,                         help='batch size (number of random rays per gradient step)')    # 学习率    parser.add_argument("--lrate", type=float, default=5e-4,                         help='learning rate')    # 指数学习率衰减    parser.add_argument("--lrate_decay", type=int, default=250,                         help='exponential learning rate decay (in 1000 steps)')    # 并行处理的光线数量,如果溢出则减少    parser.add_argument("--chunk", type=int, default=1024*32,                         help='number of rays processed in parallel, decrease if running out of memory')    # 并行发送的点数    parser.add_argument("--netchunk", type=int, default=1024*64,                         help='number of pts sent through network in parallel, decrease if running out of memory')    # 一次只能从一张图片中获取随机光线    parser.add_argument("--no_batching", action='store_true',                         help='only take random rays from 1 image at a time')    # 不要从保存的模型中加载权重    parser.add_argument("--no_reload", action='store_true',                         help='do not reload weights from saved ckpt')    # 为粗网络重新加载特定权重    parser.add_argument("--ft_path", type=str, default=None,                         help='specific weights npy file to reload for coarse network')

然后是一些渲染时的参数

    # rendering options    # 每条射线的粗样本数    parser.add_argument("--N_samples", type=int, default=64,                         help='number of coarse samples per ray')    # 每条射线附加的细样本数    parser.add_argument("--N_importance", type=int, default=0,                        help='number of additional fine samples per ray')    # 抖动    parser.add_argument("--perturb", type=float, default=1.,                        help='set to 0. for no jitter, 1. for jitter')    parser.add_argument("--use_viewdirs", action='store_true',                         help='use full 5D input instead of 3D')    # 默认位置编码    parser.add_argument("--i_embed", type=int, default=0,                         help='set 0 for default positional encoding, -1 for none')    # 多分辨率    parser.add_argument("--multires", type=int, default=10,                         help='log2 of max freq for positional encoding (3D location)')    # 2D方向的多分辨率    parser.add_argument("--multires_views", type=int, default=4,                         help='log2 of max freq for positional encoding (2D direction)')    # 噪音方差    parser.add_argument("--raw_noise_std", type=float, default=0.,                         help='std dev of noise added to regularize sigma_a output, 1e0 recommended')    # 不要优化,重新加载权重和渲染render_poses路径    parser.add_argument("--render_only", action='store_true',                         help='do not optimize, reload weights and render out render_poses path')    # 渲染测试集而不是render_poses路径    parser.add_argument("--render_test", action='store_true',                         help='render the test set instead of render_poses path')    # 下采样因子以加快渲染速度,设置为 4 或 8 用于快速预览    parser.add_argument("--render_factor", type=int, default=0,                         help='downsampling factor to speed up rendering, set 4 or 8 for fast preview')

还有一些参数

    # training options    parser.add_argument("--precrop_iters", type=int, default=0,                        help='number of steps to train on central crops')    parser.add_argument("--precrop_frac", type=float,                        default=.5, help='fraction of img taken for central crops')     # dataset options    parser.add_argument("--dataset_type", type=str, default='llff',                         help='options: llff / blender / deepvoxels')    # # 将从测试/验证集中加载 1/N 图像,这对于像 deepvoxels 这样的大型数据集很有用    parser.add_argument("--testskip", type=int, default=8,                         help='will load 1/N images from test/val sets, useful for large datasets like deepvoxels')    ## deepvoxels flags    parser.add_argument("--shape", type=str, default='greek',                         help='options : armchair / cube / greek / vase')    ## blender flags    parser.add_argument("--white_bkgd", action='store_true',                         help='set to render synthetic data on a white bkgd (always use for dvoxels)')    parser.add_argument("--half_res", action='store_true',                         help='load blender synthetic data at 400x400 instead of 800x800')    ## llff flags    # LLFF下采样因子    parser.add_argument("--factor", type=int, default=8,                         help='downsample factor for LLFF images')    parser.add_argument("--no_ndc", action='store_true',                         help='do not use normalized device coordinates (set for non-forward facing scenes)')    parser.add_argument("--lindisp", action='store_true',                         help='sampling linearly in disparity rather than depth')    parser.add_argument("--spherify", action='store_true',                         help='set for spherical 360 scenes')    parser.add_argument("--llffhold", type=int, default=8,                         help='will take every 1/N images as LLFF test set, paper uses 8')    # logging/saving options    parser.add_argument("--i_print",   type=int, default=100,                         help='frequency of console printout and metric loggin')    parser.add_argument("--i_img",     type=int, default=500,                         help='frequency of tensorboard image logging')    parser.add_argument("--i_weights", type=int, default=10000,                         help='frequency of weight ckpt saving')    parser.add_argument("--i_testset", type=int, default=50000,                         help='frequency of testset saving')    parser.add_argument("--i_video",   type=int, default=50000,                         help='frequency of render_poses video saving')

train()

训练过程的控制。开始训练,先把5D输入进行编码,然后交给MLP得到4D的数据(颜色和体素的密度),然后进行体渲染得到图片,再和真值计算L2 loss。
在这里插入图片描述

def train():    parser = config_parser()    args = parser.parse_args()    # Load data    K = None    if args.dataset_type == 'llff':        # shape: images[20,378,504,3] poses[20,3,5] render_poses[120,3,5]        images, poses, bds, render_poses, i_test = load_llff_data(args.datadir, args.factor,          recenter=True, bd_factor=.75,          spherify=args.spherify)        # hwf=[378,504,focal] poses每个batch的每一行最后一个元素拿出来        hwf = poses[0,:3,-1]        # shape: poses [20,3,4] hwf给出去之后把每一行的第5个元素删掉        poses = poses[:,:3,:4]        print('Loaded llff', images.shape, render_poses.shape, hwf, args.datadir)        if not isinstance(i_test, list):            i_test = [i_test]        if args.llffhold > 0:            print('Auto LLFF holdout,', args.llffhold)            i_test = np.arange(images.shape[0])[::args.llffhold]        # 验证集和测试集相同        i_val = i_test        # 剩下的部分当作训练集        i_train = np.array([i for i in np.arange(int(images.shape[0])) if                        (i not in i_test and i not in i_val)])        print('DEFINING BOUNDS')        # 定义边界值        if args.no_ndc:            near = np.ndarray.min(bds) * .9            far = np.ndarray.max(bds) * 1.                    else:        # 没说就是0-1            near = 0.            far = 1.        print('NEAR FAR', near, far)    elif args.dataset_type == 'blender':        images, poses, render_poses, hwf, i_split = load_blender_data(args.datadir, args.half_res, args.testskip)        print('Loaded blender', images.shape, render_poses.shape, hwf, args.datadir)        i_train, i_val, i_test = i_split        near = 2.        far = 6.        if args.white_bkgd:            images = images[...,:3]*images[...,-1:] + (1.-images[...,-1:])        else:            images = images[...,:3]    elif args.dataset_type == 'LINEMOD':        images, poses, render_poses, hwf, K, i_split, near, far = load_LINEMOD_data(args.datadir, args.half_res, args.testskip)        print(f'Loaded LINEMOD, images shape: {images.shape}, hwf: {hwf}, K: {K}')        print(f'[CHECK HERE] near: {near}, far: {far}.')        i_train, i_val, i_test = i_split        if args.white_bkgd:            images = images[...,:3]*images[...,-1:] + (1.-images[...,-1:])        else:            images = images[...,:3]    elif args.dataset_type == 'deepvoxels':        images, poses, render_poses, hwf, i_split = load_dv_data(scene=args.shape,         basedir=args.datadir,         testskip=args.testskip)        print('Loaded deepvoxels', images.shape, render_poses.shape, hwf, args.datadir)        i_train, i_val, i_test = i_split        hemi_R = np.mean(np.linalg.norm(poses[:,:3,-1], axis=-1))        near = hemi_R-1.        far = hemi_R+1.    else:        print('Unknown dataset type', args.dataset_type, 'exiting')        return    # Cast intrinsics to right types    H, W, focal = hwf    H, W = int(H), int(W)    hwf = [H, W, focal]    if K is None:        K = np.array([            [focal, 0, 0.5*W],            [0, focal, 0.5*H],            [0, 0, 1]        ])    if args.render_test:        render_poses = np.array(poses[i_test])    # Create log dir and copy the config file    basedir = args.basedir    expname = args.expname    os.makedirs(os.path.join(basedir, expname), exist_ok=True)    f = os.path.join(basedir, expname, 'args.txt')    with open(f, 'w') as file:        # 把参数统一放到./logs/expname/args.txt        for arg in sorted(vars(args)):            attr = getattr(args, arg)            file.write('{} = {}\n'.format(arg, attr))    if args.config is not None:        f = os.path.join(basedir, expname, 'config.txt')        with open(f, 'w') as file:            file.write(open(args.config, 'r').read())    # Create nerf model    # 创建模型    render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer = create_nerf(args)    global_step = start    bds_dict = {        'near' : near,        'far' : far,    }    # 本来都是dict类型,都有9个元素,加了bds之后就是11个元素了    render_kwargs_train.update(bds_dict)    render_kwargs_test.update(bds_dict)    # Move testing data to GPU    render_poses = torch.Tensor(render_poses).to(device)    # Short circuit if only rendering out from trained model    # 只渲染并生成视频    if args.render_only:        print('RENDER ONLY')        with torch.no_grad():            if args.render_test:                # render_test switches to test poses                images = images[i_test]            else:                # Default is smoother render_poses path                images = None            testsavedir = os.path.join(basedir, expname, 'renderonly_{}_{:06d}'.format('test' if args.render_test else 'path', start))            os.makedirs(testsavedir, exist_ok=True)            print('test poses shape', render_poses.shape)            rgbs, _ = render_path(render_poses, hwf, K, args.chunk, render_kwargs_test, gt_imgs=images, savedir=testsavedir, render_factor=args.render_factor)            print('Done rendering', testsavedir)            imageio.mimwrite(os.path.join(testsavedir, 'video.mp4'), to8b(rgbs), fps=30, quality=8)            return    # Prepare raybatch tensor if batching random rays    N_rand = args.N_rand # 4096    use_batching = not args.no_batching    if use_batching:        # For random ray batching        print('get rays')        # 获取光束, rays shape:[20,2,378,504,3]        rays = np.stack([get_rays_np(H, W, K, p) for p in poses[:,:3,:4]], 0) # [N, ro+rd, H, W, 3]        print('done, concats')        # 沿axis=1拼接,rayss_rgb shape:[20,3,378,504,3]        rays_rgb = np.concatenate([rays, images[:,None]], 1) # [N, ro+rd+rgb, H, W, 3]        # 改变shape,rays_rgb shape:[20,378,504,3,3]        rays_rgb = np.transpose(rays_rgb, [0,2,3,1,4]) # [N, H, W, ro+rd+rgb, 3]        # rays_rgb shape:[N-测试样本数目=17,378,504,3,3]        rays_rgb = np.stack([rays_rgb[i] for i in i_train], 0) # train images only        # 得到了(N-测试样本数目)*H*W个光束,rays_rgb shape:[(N-test)*H*W,3,3]        rays_rgb = np.reshape(rays_rgb, [-1,3,3]) # [(N-test)*H*W, ro+rd+rgb, 3]        rays_rgb = rays_rgb.astype(np.float32)        print('shuffle rays')        # 打乱这个光束的顺序        np.random.shuffle(rays_rgb)        print('done')        i_batch = 0    # Move training data to GPU    if use_batching:        images = torch.Tensor(images).to(device)    poses = torch.Tensor(poses).to(device)    if use_batching:        rays_rgb = torch.Tensor(rays_rgb).to(device)    N_iters = 200000 + 1    print('Begin')    print('TRAIN views are', i_train)    print('TEST views are', i_test)    print('VAL views are', i_val)    # Summary writers    # writer = SummaryWriter(os.path.join(basedir, 'summaries', expname))        # 默认训练200000次    start = start + 1    for i in trange(start, N_iters):        time0 = time.time()        # Sample random ray batch        if use_batching:            # Random over all images            # 取一个batch, batch shape:[4096,3,3]            batch = rays_rgb[i_batch:i_batch+N_rand] # [B, 2+1, 3*?]            # 转换0维和1维的位置[ro+rd+rgb,4096,3]            batch = torch.transpose(batch, 0, 1)            # shape: batch_rays shape[ro+rd,4096,3] target_s[4096,3]对应的是rgb            batch_rays, target_s = batch[:2], batch[2]            i_batch += N_rand            # 如果所有样本都遍历过了则打乱数据            if i_batch >= rays_rgb.shape[0]:                print("Shuffle data after an epoch!")                rand_idx = torch.randperm(rays_rgb.shape[0])                rays_rgb = rays_rgb[rand_idx]                i_batch = 0        else:            # Random from one image            img_i = np.random.choice(i_train)            target = images[img_i]            target = torch.Tensor(target).to(device)            pose = poses[img_i, :3,:4]            if N_rand is not None:                rays_o, rays_d = get_rays(H, W, K, torch.Tensor(pose))  # (H, W, 3), (H, W, 3)                if i < args.precrop_iters:                    dH = int(H//2 * args.precrop_frac)                    dW = int(W//2 * args.precrop_frac)                    coords = torch.stack(                        torch.meshgrid(torch.linspace(H//2 - dH, H//2 + dH - 1, 2*dH), torch.linspace(W//2 - dW, W//2 + dW - 1, 2*dW)                        ), -1)                    if i == start:                        print(f"[Config] Center cropping of size {2*dH} x {2*dW} is enabled until iter {args.precrop_iters}")    else:                    coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, W-1, W)), -1)  # (H, W, 2)                coords = torch.reshape(coords, [-1,2])  # (H * W, 2)                select_inds = np.random.choice(coords.shape[0], size=[N_rand], replace=False)  # (N_rand,)                select_coords = coords[select_inds].long()  # (N_rand, 2)                rays_o = rays_o[select_coords[:, 0], select_coords[:, 1]]  # (N_rand, 3)                rays_d = rays_d[select_coords[:, 0], select_coords[:, 1]]  # (N_rand, 3)                batch_rays = torch.stack([rays_o, rays_d], 0)                target_s = target[select_coords[:, 0], select_coords[:, 1]]  # (N_rand, 3)        #####  Core optimization loop  #####        # chunk=4096,batch_rays[2,4096,3]        # 返回渲染出的一个batch的rgb,disp(视差图),acc(不透明度)和extras(其他信息)        # rgb shape [4096, 3]刚好可以和target_s 对应上        # disp shape 4096,对应4096个光束        # acc shape 4096, 对应4096个光束        # extras 是一个dict,含有5个元素 shape:[4096,64,4]        rgb, disp, acc, extras = render(H, W, K, chunk=args.chunk, rays=batch_rays,                    verbose=i < 10, retraw=True,                    **render_kwargs_train)        optimizer.zero_grad()        # 求RGB的MSE img_loss shape:[20,378,504,3]        img_loss = img2mse(rgb, target_s)        # trans shape:[4096,64]        trans = extras['raw'][...,-1]        loss = img_loss        # 计算PSNR shape:[1]        psnr = mse2psnr(img_loss)        # 在extra里面的一个元素,求损失并加到整体损失上        if 'rgb0' in extras:            img_loss0 = img2mse(extras['rgb0'], target_s)            loss = loss + img_loss0            psnr0 = mse2psnr(img_loss0)        loss.backward()        optimizer.step()        # NOTE: IMPORTANT!        ###   update learning rate   ###        decay_rate = 0.1        decay_steps = args.lrate_decay * 1000        new_lrate = args.lrate * (decay_rate ** (global_step / decay_steps))        for param_group in optimizer.param_groups:            param_group['lr'] = new_lrate        ################################        dt = time.time()-time0        # print(f"Step: {global_step}, Loss: {loss}, Time: {dt}")        #####           end            #####        # Rest is logging        # 保存ckpt        if i%args.i_weights==0:            path = os.path.join(basedir, expname, '{:06d}.tar'.format(i))            torch.save({                'global_step': global_step,                'network_fn_state_dict': render_kwargs_train['network_fn'].state_dict(),                'network_fine_state_dict': render_kwargs_train['network_fine'].state_dict(),                'optimizer_state_dict': optimizer.state_dict(),            }, path)            print('Saved checkpoints at', path)        # 输出mp4视频        if i%args.i_video==0 and i > 0:            # Turn on testing mode            # reder_poses用来合成视频            with torch.no_grad():                rgbs, disps = render_path(render_poses, hwf, K, args.chunk, render_kwargs_test)            print('Done, saving', rgbs.shape, disps.shape)            moviebase = os.path.join(basedir, expname, '{}_spiral_{:06d}_'.format(expname, i))            imageio.mimwrite(moviebase + 'rgb.mp4', to8b(rgbs), fps=30, quality=8)            imageio.mimwrite(moviebase + 'disp.mp4', to8b(disps / np.max(disps)), fps=30, quality=8)            # if args.use_viewdirs:            #     render_kwargs_test['c2w_staticcam'] = render_poses[0][:3,:4]            #     with torch.no_grad():            #         rgbs_still, _ = render_path(render_poses, hwf, args.chunk, render_kwargs_test)            #     render_kwargs_test['c2w_staticcam'] = None            #     imageio.mimwrite(moviebase + 'rgb_still.mp4', to8b(rgbs_still), fps=30, quality=8)        # 保存测试数据集        if i%args.i_testset==0 and i > 0:            testsavedir = os.path.join(basedir, expname, 'testset_{:06d}'.format(i))            os.makedirs(testsavedir, exist_ok=True)            print('test poses shape', poses[i_test].shape)            with torch.no_grad():                render_path(torch.Tensor(poses[i_test]).to(device), hwf, K, args.chunk, render_kwargs_test, gt_imgs=images[i_test], savedir=testsavedir)            print('Saved test set')            if i%args.i_print==0:            tqdm.write(f"[TRAIN] Iter: {i} Loss: {loss.item()}  PSNR: {psnr.item()}")        """            print(expname, i, psnr.numpy(), loss.numpy(), global_step.numpy())            print('iter time {:.05f}'.format(dt))            with tf.contrib.summary.record_summaries_every_n_global_steps(args.i_print):                tf.contrib.summary.scalar('loss', loss)                tf.contrib.summary.scalar('psnr', psnr)                tf.contrib.summary.histogram('tran', trans)                if args.N_importance > 0:                    tf.contrib.summary.scalar('psnr0', psnr0)            if i%args.i_img==0:                # Log a rendered validation view to Tensorboard                img_i=np.random.choice(i_val)                target = images[img_i]                pose = poses[img_i, :3,:4]                with torch.no_grad():                    rgb, disp, acc, extras = render(H, W, focal, chunk=args.chunk, c2w=pose,**render_kwargs_test)                psnr = mse2psnr(img2mse(rgb, target))                with tf.contrib.summary.record_summaries_every_n_global_steps(args.i_img):                    tf.contrib.summary.image('rgb', to8b(rgb)[tf.newaxis])                    tf.contrib.summary.image('disp', disp[tf.newaxis,...,tf.newaxis])                    tf.contrib.summary.image('acc', acc[tf.newaxis,...,tf.newaxis])                    tf.contrib.summary.scalar('psnr_holdout', psnr)                    tf.contrib.summary.image('rgb_holdout', target[tf.newaxis])                if args.N_importance > 0:                    with tf.contrib.summary.record_summaries_every_n_global_steps(args.i_img):                        tf.contrib.summary.image('rgb0', to8b(extras['rgb0'])[tf.newaxis])                        tf.contrib.summary.image('disp0', extras['disp0'][tf.newaxis,...,tf.newaxis])                        tf.contrib.summary.image('z_std', extras['z_std'][tf.newaxis,...,tf.newaxis])        """        global_step += 1

梳理完train,我们来重点看一下train当中调用过的几个函数

create_nerf()

先调用get_embedder获得一个对应的embedding函数,然后构建NeRF模型

def create_nerf(args):    """Instantiate NeRF's MLP model.    """    embed_fn, input_ch = get_embedder(args.multires, args.i_embed)    input_ch_views = 0    embeddirs_fn = None    if args.use_viewdirs:        embeddirs_fn, input_ch_views = get_embedder(args.multires_views, args.i_embed)    output_ch = 5 if args.N_importance > 0 else 4    skips = [4]    # 构建模型    model = NeRF(D=args.netdepth, W=args.netwidth,                 input_ch=input_ch, output_ch=output_ch, skips=skips,                 input_ch_views=input_ch_views, use_viewdirs=args.use_viewdirs).to(device)    # 梯度    grad_vars = list(model.parameters())    model_fine = None    if args.N_importance > 0:        # 需要精细网络        model_fine = NeRF(D=args.netdepth_fine, W=args.netwidth_fine,                          input_ch=input_ch, output_ch=output_ch, skips=skips,                          input_ch_views=input_ch_views, use_viewdirs=args.use_viewdirs).to(device)        grad_vars += list(model_fine.parameters())    network_query_fn = lambda inputs, viewdirs, network_fn : run_network(inputs, viewdirs, network_fn,        embed_fn=embed_fn,        embeddirs_fn=embeddirs_fn,        netchunk=args.netchunk)    # Create optimizer    optimizer = torch.optim.Adam(params=grad_vars, lr=args.lrate, betas=(0.9, 0.999))    start = 0    basedir = args.basedir    expname = args.expname    ##########################    # Load checkpoints    if args.ft_path is not None and args.ft_path!='None':        ckpts = [args.ft_path]    else:        ckpts = [os.path.join(basedir, expname, f) for f in sorted(os.listdir(os.path.join(basedir, expname))) if 'tar' in f]    print('Found ckpts', ckpts)    if len(ckpts) > 0 and not args.no_reload:        ckpt_path = ckpts[-1]        print('Reloading from', ckpt_path)        ckpt = torch.load(ckpt_path)        start = ckpt['global_step']        optimizer.load_state_dict(ckpt['optimizer_state_dict'])        # Load model        model.load_state_dict(ckpt['network_fn_state_dict'])        if model_fine is not None:            model_fine.load_state_dict(ckpt['network_fine_state_dict'])    ##########################    # 加载模型    render_kwargs_train = {        'network_query_fn' : network_query_fn,        'perturb' : args.perturb,        'N_importance' : args.N_importance,        'network_fine' : model_fine,        'N_samples' : args.N_samples,        'network_fn' : model,        'use_viewdirs' : args.use_viewdirs,        'white_bkgd' : args.white_bkgd,        'raw_noise_std' : args.raw_noise_std,    }    # NDC only good for LLFF-style forward facing data    if args.dataset_type != 'llff' or args.no_ndc:        print('Not ndc!')        render_kwargs_train['ndc'] = False        render_kwargs_train['lindisp'] = args.lindisp    render_kwargs_test = {k : render_kwargs_train[k] for k in render_kwargs_train}    render_kwargs_test['perturb'] = False    render_kwargs_test['raw_noise_std'] = 0.    return render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer

render()

接下来我们看一下如何渲染,render函数返回的是光束对应的rgb图、视差图、不透明度,以及raw

def render(H, W, K, chunk=1024*32, rays=None, c2w=None, ndc=True,                  near=0., far=1.,                  use_viewdirs=False, c2w_staticcam=None,                  **kwargs):    """Render rays    Args:      H: int. Height of image in pixels.      W: int. Width of image in pixels.      focal: float. Focal length of pinhole camera.      chunk: int. Maximum number of rays to process simultaneously. Used to        control maximum memory usage. Does not affect final results.      rays: array of shape [2, batch_size, 3]. Ray origin and direction for        each example in batch.      c2w: array of shape [3, 4]. Camera-to-world transformation matrix.      ndc: bool. If True, represent ray origin, direction in NDC coordinates.      near: float or array of shape [batch_size]. Nearest distance for a ray.      far: float or array of shape [batch_size]. Farthest distance for a ray.      use_viewdirs: bool. If True, use viewing direction of a point in space in model.      c2w_staticcam: array of shape [3, 4]. If not None, use this transformation matrix for        camera while using other c2w argument for viewing directions.    Returns:      rgb_map: [batch_size, 3]. Predicted RGB values for rays.      disp_map: [batch_size]. Disparity map. Inverse of depth.      acc_map: [batch_size]. Accumulated opacity (alpha) along a ray.      extras: dict with everything returned by render_rays().    """    if c2w is not None:        # c2w是相机到世界的坐标变换矩阵        # special case to render full image        rays_o, rays_d = get_rays(H, W, K, c2w)    else:        # use provided ray batch        # shape: rays[2,4096,3] rays_o[4096,3] rays_d[4096,3]        rays_o, rays_d = rays    if use_viewdirs:        # provide ray directions as input        viewdirs = rays_d        if c2w_staticcam is not None:            # special case to visualize effect of viewdirs            rays_o, rays_d = get_rays(H, W, K, c2w_staticcam)        viewdirs = viewdirs / torch.norm(viewdirs, dim=-1, keepdim=True)        viewdirs = torch.reshape(viewdirs, [-1,3]).float()    # sh[4096,3]    sh = rays_d.shape # [..., 3]    if ndc:        # for forward facing scenes        rays_o, rays_d = ndc_rays(H, W, K[0][0], 1., rays_o, rays_d)    # Create ray batch    rays_o = torch.reshape(rays_o, [-1,3]).float()    rays_d = torch.reshape(rays_d, [-1,3]).float()    # shape: near[4096,1] far[4096,1] 全0或全1    near, far = near * torch.ones_like(rays_d[...,:1]), far * torch.ones_like(rays_d[...,:1])    # shape:[4096,3+3+1+1=8]    rays = torch.cat([rays_o, rays_d, near, far], -1)    if use_viewdirs:        rays = torch.cat([rays, viewdirs], -1)    # Render and reshape    # chunk默认值是1024*32=32768    all_ret = batchify_rays(rays, chunk, **kwargs)    for k in all_ret:        k_sh = list(sh[:-1]) + list(all_ret[k].shape[1:])        all_ret[k] = torch.reshape(all_ret[k], k_sh)    # raw和另外三个分开    k_extract = ['rgb_map', 'disp_map', 'acc_map']    ret_list = [all_ret[k] for k in k_extract]    ret_dict = {k : all_ret[k] for k in all_ret if k not in k_extract}    return ret_list + [ret_dict]

batchify_rays()

将光束作为一个batch,chunk是并行处理的光束数量,ret是一个chunk(1024×32=32768)的结果,all_ret是一个batch的结果

def batchify_rays(rays_flat, chunk=1024*32, **kwargs):    """Render rays in smaller minibatches to avoid OOM.    """    all_ret = {}    # shape: rays_flat[4096,8]    for i in range(0, rays_flat.shape[0], chunk):        # ret是一个字典,shape:rgb_map[4096,3] disp_map[4096] acc_map[4096] raw[4096,64,4]        ret = render_rays(rays_flat[i:i+chunk], **kwargs)        # 每一个key对应一个list,list包含了所有的ret对应key的value        for k in ret:            if k not in all_ret:                all_ret[k] = []            all_ret[k].append(ret[k])    all_ret = {k : torch.cat(all_ret[k], 0) for k in all_ret}    return all_ret

render_rays()

def render_rays(ray_batch,                network_fn,                network_query_fn,                N_samples,                retraw=False,                lindisp=False,                perturb=0.,                N_importance=0,                network_fine=None,                white_bkgd=False,                raw_noise_std=0.,                verbose=False,                pytest=False):    """Volumetric rendering.    Args:      ray_batch: array of shape [batch_size, ...]. All information necessary        for sampling along a ray, including: ray origin, ray direction, min        dist, max dist, and unit-magnitude viewing direction.      network_fn: function. Model for predicting RGB and density at each point        in space. 用于预测每个点的 RGB 和密度的模型      network_query_fn: function used for passing queries to network_fn.      N_samples: int. Number of different times to sample along each ray.每条射线上的采样次数      retraw: bool. If True, include model's raw, unprocessed predictions.      lindisp: bool. If True, sample linearly in inverse depth rather than in depth.      perturb: float, 0 or 1. If non-zero, each ray is sampled at stratified        random points in time.      N_importance: int. Number of additional times to sample along each ray.        These samples are only passed to network_fine.      network_fine: "fine" network with same spec as network_fn.      white_bkgd: bool. If True, assume a white background.      raw_noise_std: ...      verbose: bool. If True, print more debugging info.    Returns:      rgb_map: [num_rays, 3]. Estimated RGB color of a ray. Comes from fine model.      disp_map: [num_rays]. Disparity map. 1 / depth.      acc_map: [num_rays]. Accumulated opacity along each ray. Comes from fine model.      raw: [num_rays, num_samples, 4]. Raw predictions from model.      rgb0: See rgb_map. Output for coarse model.      disp0: See disp_map. Output for coarse model.      acc0: See acc_map. Output for coarse model.      z_std: [num_rays]. Standard deviation of distances along ray for each        sample.    """    # 从ray_batch提取需要的数据    # 光束数量默认4096    N_rays = ray_batch.shape[0]    rays_o, rays_d = ray_batch[:,0:3], ray_batch[:,3:6] # [N_rays, 3] each    viewdirs = ray_batch[:,-3:] if ray_batch.shape[-1] > 8 else None    # shape: bounds[4096,1,2] near[4096,1] far[4096,1]    bounds = torch.reshape(ray_batch[...,6:8], [-1,1,2])    near, far = bounds[...,0], bounds[...,1] # [-1,1]    # 每个光束上取N_samples个点,默认64个    t_vals = torch.linspace(0., 1., steps=N_samples)    if not lindisp:        z_vals = near * (1.-t_vals) + far * (t_vals)    else:        z_vals = 1./(1./near * (1.-t_vals) + 1./far * (t_vals))    z_vals = z_vals.expand([N_rays, N_samples])    if perturb > 0.:        # get intervals between samples        mids = .5 * (z_vals[...,1:] + z_vals[...,:-1])        upper = torch.cat([mids, z_vals[...,-1:]], -1)        lower = torch.cat([z_vals[...,:1], mids], -1)        # stratified samples in those intervals        t_rand = torch.rand(z_vals.shape)        # Pytest, overwrite u with numpy's fixed random numbers        if pytest:            np.random.seed(0)            t_rand = np.random.rand(*list(z_vals.shape))            t_rand = torch.Tensor(t_rand)        z_vals = lower + (upper - lower) * t_rand    # 光束打到的位置(采样点),可用来输入网络查询颜色和密度 shape: pts[4096,64,3]    pts = rays_o[...,None,:] + rays_d[...,None,:] * z_vals[...,:,None] # [N_rays, N_samples, 3]    # raw = run_network(pts)    # 根据pts,viewdirs进行前向计算。raw[4096,64,4],最后一个维是RGB+density。    raw = network_query_fn(pts, viewdirs, network_fn)    # 这一步相当于是在做volume render,将光束颜色合成图像上的点    rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, raw_noise_std, white_bkgd, pytest=pytest)    # 下面是有精细网络的情况,会再算一遍上述步骤,然后也封装到ret    if N_importance > 0:        # 保存前面的值        rgb_map_0, disp_map_0, acc_map_0 = rgb_map, disp_map, acc_map        # 重新采样光束上的点        z_vals_mid = .5 * (z_vals[...,1:] + z_vals[...,:-1])        z_samples = sample_pdf(z_vals_mid, weights[...,1:-1], N_importance, det=(perturb==0.), pytest=pytest)        z_samples = z_samples.detach()        z_vals, _ = torch.sort(torch.cat([z_vals, z_samples], -1), -1)        pts = rays_o[...,None,:] + rays_d[...,None,:] * z_vals[...,:,None] # [N_rays, N_samples + N_importance, 3]        run_fn = network_fn if network_fine is None else network_fine        # raw = run_network(pts, fn=run_fn)        raw = network_query_fn(pts, viewdirs, run_fn)        rgb_map, disp_map, acc_map, weights, depth_map = raw2outputs(raw, z_vals, rays_d, raw_noise_std, white_bkgd, pytest=pytest)    # 不管有无精细网络都要    # shape: rgb_map[4096,3] disp_map[4096] acc_map[4096]    ret = {'rgb_map' : rgb_map, 'disp_map' : disp_map, 'acc_map' : acc_map}    if retraw:        ret['raw'] = raw    if N_importance > 0:        ret['rgb0'] = rgb_map_0        ret['disp0'] = disp_map_0        ret['acc0'] = acc_map_0        ret['z_std'] = torch.std(z_samples, dim=-1, unbiased=False)  # [N_rays]    for k in ret:        if (torch.isnan(ret[k]).any() or torch.isinf(ret[k]).any()) and DEBUG:            print(f"! [Numerical Error] {k} contains nan or inf.")    return ret

raw2outputs()

把模型的预测转化为有实际意义的表达,输入预测、时间和光束方向,输出光束颜色、视差、密度、每个采样点的权重和深度

def raw2outputs(raw, z_vals, rays_d, raw_noise_std=0, white_bkgd=False, pytest=False):    """Transforms model's predictions to semantically meaningful values.    Args:        raw: [num_rays, num_samples along ray, 4]. Prediction from model.        z_vals: [num_rays, num_samples along ray]. Integration time.        rays_d: [num_rays, 3]. Direction of each ray.    Returns:        rgb_map: [num_rays, 3]. Estimated RGB color of a ray.        disp_map: [num_rays]. Disparity map. Inverse of depth map.        acc_map: [num_rays]. Sum of weights along each ray.        weights: [num_rays, num_samples]. Weights assigned to each sampled color.        depth_map: [num_rays]. Estimated distance to object.    """    raw2alpha = lambda raw, dists, act_fn=F.relu: 1.-torch.exp(-act_fn(raw)*dists)    dists = z_vals[...,1:] - z_vals[...,:-1]    dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[...,:1].shape)], -1)  # [N_rays, N_samples]    dists = dists * torch.norm(rays_d[...,None,:], dim=-1)    # 获取模型预测的每个点的颜色    rgb = torch.sigmoid(raw[...,:3])  # [N_rays, N_samples, 3]    noise = 0.    if raw_noise_std > 0.:        noise = torch.randn(raw[...,3].shape) * raw_noise_std        # Overwrite randomly sampled data if pytest        if pytest:            np.random.seed(0)            noise = np.random.rand(*list(raw[...,3].shape)) * raw_noise_std            noise = torch.Tensor(noise)    # 给密度加噪音    alpha = raw2alpha(raw[...,3] + noise, dists)  # [N_rays, N_samples]    # weights = alpha * tf.math.cumprod(1.-alpha + 1e-10, -1, exclusive=True)    weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)), 1.-alpha + 1e-10], -1), -1)[:, :-1]    rgb_map = torch.sum(weights[...,None] * rgb, -2)  # [N_rays, 3]    depth_map = torch.sum(weights * z_vals, -1)    disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map), depth_map / torch.sum(weights, -1))    acc_map = torch.sum(weights, -1)    if white_bkgd:        rgb_map = rgb_map + (1.-acc_map[...,None])    return rgb_map, disp_map, acc_map, weights, depth_map

render_path()

根据pose等信息获得颜色和视差

def render_path(render_poses, hwf, K, chunk, render_kwargs, gt_imgs=None, savedir=None, render_factor=0):    H, W, focal = hwf    if render_factor!=0:        # Render downsampled for speed        H = H//render_factor        W = W//render_factor        focal = focal/render_factor    rgbs = []    disps = []    t = time.time()    for i, c2w in enumerate(tqdm(render_poses)):        print(i, time.time() - t)        t = time.time()        rgb, disp, acc, _ = render(H, W, K, chunk=chunk, c2w=c2w[:3,:4], **render_kwargs)        rgbs.append(rgb.cpu().numpy())        disps.append(disp.cpu().numpy())        if i==0:            print(rgb.shape, disp.shape)        """        if gt_imgs is not None and render_factor==0:            p = -10. * np.log10(np.mean(np.square(rgb.cpu().numpy() - gt_imgs[i])))            print(p)        """        if savedir is not None:            rgb8 = to8b(rgbs[-1])            filename = os.path.join(savedir, '{:03d}.png'.format(i))            imageio.imwrite(filename, rgb8)    rgbs = np.stack(rgbs, 0)    disps = np.stack(disps, 0)    return rgbs, disps

run_nerf_helpers.py

这个里面写了一些必要的函数

class NeRF()

这个类用于创建model,alpha输出的是密度,rgb是颜色,一个batch是1024个光束,也就是一个光束采样64个点

class NeRF(nn.Module):    def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirs=False):        """         """        super(NeRF, self).__init__()        self.D = D        self.W = W        # 输入的通道        self.input_ch = input_ch        # 输入的视角        self.input_ch_views = input_ch_views        self.skips = skips        self.use_viewdirs = use_viewdirs                self.pts_linears = nn.ModuleList(            [nn.Linear(input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)])                ### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105)        self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)])        ### Implementation according to the paper        # self.views_linears = nn.ModuleList(        #     [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)])                if use_viewdirs:            self.feature_linear = nn.Linear(W, W)            self.alpha_linear = nn.Linear(W, 1)            self.rgb_linear = nn.Linear(W//2, 3)        else:            self.output_linear = nn.Linear(W, output_ch)    def forward(self, x):        input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)        h = input_pts        for i, l in enumerate(self.pts_linears):            h = self.pts_linears[i](h)            h = F.relu(h)            if i in self.skips:                h = torch.cat([input_pts, h], -1)        if self.use_viewdirs:            alpha = self.alpha_linear(h)            feature = self.feature_linear(h)            h = torch.cat([feature, input_views], -1)                    for i, l in enumerate(self.views_linears):                h = self.views_linears[i](h)                h = F.relu(h)            rgb = self.rgb_linear(h)            outputs = torch.cat([rgb, alpha], -1)        else:            outputs = self.output_linear(h)        return outputs        def load_weights_from_keras(self, weights):        assert self.use_viewdirs, "Not implemented if use_viewdirs=False"                # Load pts_linears        for i in range(self.D):            idx_pts_linears = 2 * i            self.pts_linears[i].weight.data = torch.from_numpy(np.transpose(weights[idx_pts_linears]))                self.pts_linears[i].bias.data = torch.from_numpy(np.transpose(weights[idx_pts_linears+1]))                # Load feature_linear        idx_feature_linear = 2 * self.D        self.feature_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_feature_linear]))        self.feature_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_feature_linear+1]))        # Load views_linears        idx_views_linears = 2 * self.D + 2        self.views_linears[0].weight.data = torch.from_numpy(np.transpose(weights[idx_views_linears]))        self.views_linears[0].bias.data = torch.from_numpy(np.transpose(weights[idx_views_linears+1]))        # Load rgb_linear        idx_rbg_linear = 2 * self.D + 4        self.rgb_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear]))        self.rgb_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear+1]))        # Load alpha_linear        idx_alpha_linear = 2 * self.D + 6        self.alpha_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear]))        self.alpha_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear+1]))

get_rays_np()

获得光束的方法

def get_rays_np(H, W, K, c2w):    # 生成网格点坐标矩阵,i和j分别表示每个像素的坐标    i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')    dirs = np.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -np.ones_like(i)], -1)    # Rotate ray directions from camera frame to the world frame    # 将光线方向从相机旋转到世界    rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1)  # dot product, equals to: [c2w.dot(dir) for dir in dirs]    # Translate camera frame's origin to the world frame. It is the origin of all rays.    # 将相机框架的原点转换为世界框架,它是所有光线的起源    rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))    return rays_o, rays_d

ndc_rays()

把光线的原点移动到near平面

def ndc_rays(H, W, focal, near, rays_o, rays_d):    # Shift ray origins to near plane    t = -(near + rays_o[...,2]) / rays_d[...,2]    rays_o = rays_o + t[...,None] * rays_d        # Projection    o0 = -1./(W/(2.*focal)) * rays_o[...,0] / rays_o[...,2]    o1 = -1./(H/(2.*focal)) * rays_o[...,1] / rays_o[...,2]    o2 = 1. + 2. * near / rays_o[...,2]    d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - rays_o[...,0]/rays_o[...,2])    d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - rays_o[...,1]/rays_o[...,2])    d2 = -2. * near / rays_o[...,2]        rays_o = torch.stack([o0,o1,o2], -1)    rays_d = torch.stack([d0,d1,d2], -1)        return rays_o, rays_d

接下来我们了解一下数据是怎么读取的

load_llff.py

_load_data()

def _load_data(basedir, factor=None, width=None, height=None, load_imgs=True):    # 读取npy文件     poses_arr = np.load(os.path.join(basedir, 'poses_bounds.npy'))    poses = poses_arr[:, :-2].reshape([-1, 3, 5]).transpose([1,2,0])    bds = poses_arr[:, -2:].transpose([1,0])        # 单张图片    img0 = [os.path.join(basedir, 'images', f) for f in sorted(os.listdir(os.path.join(basedir, 'images'))) \            if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')][0]    # 获取单张图片的shape    sh = imageio.imread(img0).shape        sfx = ''        if factor is not None:        sfx = '_{}'.format(factor)        _minify(basedir, factors=[factor])        factor = factor    elif height is not None:        factor = sh[0] / float(height)        width = int(sh[1] / factor)        _minify(basedir, resolutions=[[height, width]])        sfx = '_{}x{}'.format(width, height)    elif width is not None:        factor = sh[1] / float(width)        height = int(sh[0] / factor)        _minify(basedir, resolutions=[[height, width]])        sfx = '_{}x{}'.format(width, height)    else:        factor = 1        imgdir = os.path.join(basedir, 'images' + sfx)    if not os.path.exists(imgdir):        print( imgdir, 'does not exist, returning' )        return        # 包含了目标数据的路径    imgfiles = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir)) if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')]    if poses.shape[-1] != len(imgfiles):        print( 'Mismatch between imgs {} and poses {} !!!!'.format(len(imgfiles), poses.shape[-1]) )        return        sh = imageio.imread(imgfiles[0]).shape    poses[:2, 4, :] = np.array(sh[:2]).reshape([2, 1])    poses[2, 4, :] = poses[2, 4, :] * 1./factor        if not load_imgs:        return poses, bds        def imread(f):        if f.endswith('png'):            return imageio.imread(f, ignoregamma=True)        else:            return imageio.imread(f)            # 读取所有图像数据并把值缩小到0-1之间    imgs = imgs = [imread(f)[...,:3]/255. for f in imgfiles]    #     imgs = np.stack(imgs, -1)          print('Loaded image data', imgs.shape, poses[:,-1,0])    return poses, bds, imgs

_minify()

这个函数主要负责创建目标分辨率的数据集

def _minify(basedir, factors=[], resolutions=[]):    # 判断是否需要加载,如果不存在对应下采样或者分辨率的文件夹就需要加载    needtoload = False    for r in factors:        imgdir = os.path.join(basedir, 'images_{}'.format(r))        if not os.path.exists(imgdir):            needtoload = True    for r in resolutions:        imgdir = os.path.join(basedir, 'images_{}x{}'.format(r[1], r[0]))        if not os.path.exists(imgdir):            needtoload = True    if not needtoload:        return        from shutil import copy    from subprocess import check_output        imgdir = os.path.join(basedir, 'images')    imgs = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir))]    imgs = [f for f in imgs if any([f.endswith(ex) for ex in ['JPG', 'jpg', 'png', 'jpeg', 'PNG']])]    imgdir_orig = imgdir        wd = os.getcwd()    for r in factors + resolutions:        if isinstance(r, int):            name = 'images_{}'.format(r)            resizearg = '{}%'.format(100./r)        else:            name = 'images_{}x{}'.format(r[1], r[0])            resizearg = '{}x{}'.format(r[1], r[0])        imgdir = os.path.join(basedir, name)        if os.path.exists(imgdir):            continue                    print('Minifying', r, basedir)                os.makedirs(imgdir)        check_output('cp {}/* {}'.format(imgdir_orig, imgdir), shell=True)                ext = imgs[0].split('.')[-1]        args = ' '.join(['mogrify', '-resize', resizearg, '-format', 'png', '*.{}'.format(ext)])        print(args)        os.chdir(imgdir) # 修改当前工作目录        check_output(args, shell=True)        os.chdir(wd)                if ext != 'png':            check_output('rm {}/*.{}'.format(imgdir, ext), shell=True)            print('Removed duplicates')        print('Done')            

load_llff_data()

def load_llff_data(basedir, factor=8, recenter=True, bd_factor=.75, spherify=False, path_zflat=False):    poses, bds, imgs = _load_data(basedir, factor=factor) # factor=8 downsamples original imgs by 8x    print('Loaded', basedir, bds.min(), bds.max())        # Correct rotation matrix ordering and move variable dim to axis 0    poses = np.concatenate([poses[:, 1:2, :], -poses[:, 0:1, :], poses[:, 2:, :]], 1)    poses = np.moveaxis(poses, -1, 0).astype(np.float32)    imgs = np.moveaxis(imgs, -1, 0).astype(np.float32)    images = imgs    bds = np.moveaxis(bds, -1, 0).astype(np.float32)        # Rescale if bd_factor is provided    # sc是进行边界缩放的比例    sc = 1. if bd_factor is None else 1./(bds.min() * bd_factor)    # pose也就要对应缩放    poses[:,:3,3] *= sc    bds *= sc        if recenter:        # 修改pose(shape=图像数,通道数,5)前四列的值,只有最后一列(高、宽、焦距)不变          poses = recenter_poses(poses)            if spherify:        poses, render_poses, bds = spherify_poses(poses, bds)    else:                # shape=(3,5)相当于汇集了所有图像        c2w = poses_avg(poses)         print('recentered', c2w.shape)        print(c2w[:3,:4])        ## Get spiral        # Get average pose        # 3*1        up = normalize(poses[:, :3, 1].sum(0))        # Find a reasonable "focus depth" for this dataset        close_depth, inf_depth = bds.min()*.9, bds.max()*5.        dt = .75        mean_dz = 1./(((1.-dt)/close_depth + dt/inf_depth))        # 焦距        focal = mean_dz        # Get radii for spiral path        shrink_factor = .8        zdelta = close_depth * .2        # 获取所有poses的3列,shape(图片数,3)        tt = poses[:,:3,3] # ptstocam(poses[:3,3,:].T, c2w).T        # 求90百分位的值        rads = np.percentile(np.abs(tt), 90, 0)        c2w_path = c2w        N_views = 120        N_rots = 2        if path_zflat:            # zloc = np.percentile(tt, 10, 0)[2]            zloc = -close_depth * .1            c2w_path[:3,3] = c2w_path[:3,3] + zloc * c2w_path[:3,2]            rads[2] = 0.            N_rots = 1            N_views/=2        # Generate poses for spiral path        # 一个list,有120(由N_views决定)个元素,每个元素shape(3,5)        render_poses = render_path_spiral(c2w_path, up, rads, focal, zdelta, zrate=.5, rots=N_rots, N=N_views)                        render_poses = np.array(render_poses).astype(np.float32)    c2w = poses_avg(poses)    print('Data:')    print(poses.shape, images.shape, bds.shape)        # shape 图片数    dists = np.sum(np.square(c2w[:3,3] - poses[:,:3,3]), -1)    # 取到值最小的索引    i_test = np.argmin(dists)    print('HOLDOUT view is', i_test)        images = images.astype(np.float32)    poses = poses.astype(np.float32)    # images (图片数,高,宽,3通道), poses (图片数,3通道,5) ,bds (图片数,2) render_poses(N_views,图片数,5),i_test为一个索引数字    return images, poses, bds, render_poses, i_test

render_path_spiral()

def render_path_spiral(c2w, up, rads, focal, zdelta, zrate, rots, N):    render_poses = []    rads = np.array(list(rads) + [1.])    hwf = c2w[:,4:5]        for theta in np.linspace(0., 2. * np.pi * rots, N+1)[:-1]:        c = np.dot(c2w[:3,:4], np.array([np.cos(theta), -np.sin(theta), -np.sin(theta*zrate), 1.]) * rads)         z = normalize(c - np.dot(c2w[:3,:4], np.array([0,0,-focal, 1.])))        render_poses.append(np.concatenate([viewmatrix(z, up, c), hwf], 1))    return render_poses

来源地址:https://blog.csdn.net/YuhsiHu/article/details/124676445

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯