文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

使用深度学习的方法进行人脸解锁

2024-12-03 07:29

关注

 

今天,我们将使用深度学习来创建面部解锁算法。 要完成我们的任务需要三个主要部分。

人脸面孔查找和定位

首先,我们需要一种在图像中查找人脸的方法。 我们可以使用一种称为MTCNN(多任务级联卷积网络)的端到端方法。

只是一点技术背景,所以称为Cascaded,因为它由多个阶段组成,每个阶段都有其神经网络。 下图显示了该框架。

 

 

我们依靠facenet-pytorch中的MTCNN实现。

数据

我们需要图像! 我整理了一些照片,莱昂纳多·迪卡普里奥和马特·戴蒙。

遵循PyTorch最佳做法,我使用ImageFolder加载数据集。 我创建了MTCNN实例,并使用transform参数将其传递给数据集。

我的文件夹结构如下:

  1. ./faces  
  2. ├── di_caprio  
  3. │   ├── ....jpg  
  4. ├── matt_demon  
  5. │   ├── ....jpg  
  6. └── me  
  7. │   ├── ....jpg  

 

MTCNN自动裁剪输入并调整其大小,我使用image_size = 160,因为模型将使用具有该尺寸的图像进行训练。 我还要添加18像素的边距,以确保我们包括整个脸部。

  1. import torch  
  2. import torchvision.transforms as T  
  3. import matplotlib.pyplot as plt  
  4.   
  5. from torch.utils.data import Dataset, DataLoader  
  6. from torchvision.datasets import ImageFolder  
  7. from facenet_pytorch import MTCNN, InceptionResnetV1  
  8. from pathlib import Path  
  9. from typing import Union, Callable  
  10.   
  11. data_root = Path('.')  
  12. create the MTCNN network  
  13. transform = MTCNN(image_size=160, margin=18)  
  14.   
  15. ds = ImageFolder(root=data_root / 'faces', transform=transform)  
  16. # our dataset is so small that the batch_size can equal to its lenght  
  17. dl = DataLoader(ds, batch_size=len(ds))  
  18.   
  19. ds[1]  

 

ds结构如下:

  1. (tensor([[[ 0.9023, 0.9180, 0.9180, ..., 0.8398, 0.8242, 0.8242], [ 0.9023, 0.9414, 0.9492, ..., 0.8555, 0.8320, 0.8164], [ 0.9336, 0.9805, 0.9727, ..., 0.8555, 0.8320, 0.7930], ..., [-0.7070, -0.7383, -0.7305, ..., 0.4102, 0.3320, 0.3711], [-0.7539, -0.7383, -0.7305, ..., 0.3789, 0.3633, 0.4102], [-0.7383, -0.7070, -0.7227, ..., 0.3242, 0.3945, 0.4023]], [[ 0.9492, 0.9492, 0.9492, ..., 0.9336, 0.9258, 0.9258], [ 0.9336, 0.9492, 0.9492, ..., 0.9492, 0.9336, 0.9258], [ 0.9414, 0.9648, 0.9414, ..., 0.9570, 0.9414, 0.9258], ..., [-0.3633, -0.3867, -0.3867, ..., 0.6133, 0.5352, 0.5820], [-0.3945, -0.3867, -0.3945, ..., 0.5820, 0.5742, 0.6211], [-0.3711, -0.3633, -0.4023, ..., 0.5273, 0.6055, 0.6211]], [[ 0.8867, 0.8867, 0.8945, ..., 0.8555, 0.8477, 0.8477], [ 0.8789, 0.8867, 0.8789, ..., 0.8789, 0.8633, 0.8477], [ 0.8867, 0.9023, 0.8633, ..., 0.9023, 0.8789, 0.8555], ..., [-0.0352, -0.0586, -0.0977, ..., 0.7617, 0.7070, 0.7461], [-0.0586, -0.0586, -0.0977, ..., 0.7617, 0.7617, 0.8086], [-0.0352, -0.0352, -0.1211, ..., 0.7227, 0.8086, 0.8086]]]), 0)  

数据集返回张量。 让我们可视化所有输入。 它们已通过MTCNN图像进行了归一化,最后一行的最后三张图像是我自己的自拍照:)

 

 

嵌入向量空间

我们的数据已准备就绪。 为了比较人脸并找出两个人脸是否相似,我们需要在向量空间中对它们进行编码,如果两个人脸相似,则与它们相关联的两个向量也都相似(接近)。

我们可以使用在一个著名的人脸数据集(例如vgg_face2)上训练的模型,并使用分类头之前的最后一层的输出(潜在空间)作为编码器。

在这些数据集之一上训练的模型必须学习有关输入的重要特征。 最后一层(在完全连接的层之前)对高级功能进行编码。 因此,我们可以使用它将输入嵌入向量空间中,希望相似图像彼此靠近。

详细地,我们将使用在vggface2数据集上训练的初始Resnet。 嵌入空间的尺寸为512。

  1. resnet = InceptionResnetV1(pretrained='vggface2').eval()  
  2.   
  3. with torch.no_grad():  
  4.     for (imgs, labels) in dl:  
  5.         embs = resnet(imgs)  
  6.         break  
  7.   
  8. embs.shape  
  9.   
  10. torch.Size([8, 512])  

 

完美,我们有8张图片,我们获得了8个矢量

相似度计算

为了比较向量,我们可以使用cosine_similarity来查看它们彼此之间的距离。 余弦相似度将输出[-1,1]之间的值。 在朴素的情况下,两个比较的向量相同,它们的相似度为1。因此,最接近1的相似度。

现在,我们可以在数据集中找到每对之间的所有距离。

  1. import seaborn as sns  
  2. import numpy as np  
  3.   
  4. similarity_matrix = torch.zeros(embs.shape[0], embs.shape[0])  
  5.   
  6. for i in range(embs.shape[0]):  
  7.     for j in range(embs.shape[0]):  
  8.         similarity_matrix[i,j] = torch.cosine_similarity(embs[i].view(1, -1), embs[j].view(1, -1))  
  9.   
  10.   
  11. fig = plt.figure(figsize=(15, 15))  
  12.   
  13. sns.heatmap(similarity_matrix.numpy(), annot = True,)  
  14.   
  15. numicons = 8  
  16. for i in range(numicons):  
  17.     axicon = fig.add_axes([0.12+0.082*i,0.01,0.05,0.05])  
  18.     axicon.imshow(un_normalize(ds[i][0]).permute(1,2,0).numpy())  
  19.     axicon.set_xticks([])  
  20.     axicon.set_yticks([])  
  21.   
  22.     axicon = fig.add_axes([0, 0.15 + 0.092 * i,.05,0.05])  
  23.     axicon.imshow(un_normalize(ds[len(ds) - 1 - i][0]).permute(1,2,0).numpy())  
  24.     axicon.set_xticks([])  
  25.     axicon.set_yticks([])  

 

 

 

显然,我与Matt或Leo不太相似,但是它们有一些共同点!

我们可以更加深入,在嵌入向量中运行PCA并将图像投影到二维平面中

  1. from matplotlib.offsetbox import OffsetImage, AnnotationBbox  
  2.   
  3. def pca(x: torch.Tensor, k: int = 2) -> torch.Tensor:  
  4.     """  
  5.     From http://agnesmustar.com/2017/11/01/principal-component-analysis-pca-implemented-pytorch/  
  6.     """  
  7.     # preprocess the data  
  8.     X_mean = torch.mean(x, 0)  
  9.     x = x - X_mean.expand_as(x)  
  10.     # svd  
  11.     U, S, V = torch.svd(torch.t(x))  
  12.     return torch.mm(x, U[:, :k])  
  13.   
  14. points = pca(embs, k=2)  
  15. plt.rcParams["figure.figsize"] = (12,12)  
  16.   
  17. fig, ax = plt.figure(), plt.subplot(111)  
  18. plt.scatter(points[:,0], points[:,1])  
  19. for i, p in enumerate(points):  
  20.     x, y = p[0], p[1]  
  21.     img = un_normalize(ds[i][0])  
  22.     img_np = img.permute(1, 2, 0).numpy().squeeze()  
  23.     ab = AnnotationBbox(OffsetImage(img_np, zoom=0.6), (x, y), frameon=False)  
  24.     ax.add_artist(ab)  
  25.   
  26. plt.plot()  

 

 

 

我们将512维压缩为2,所以我们丢失了很多数据。

好的,我们有一种方法来找到脸,看看它们是否彼此相似,现在我们可以创建我们的脸解锁算法。

我的想法是取n张允许的人的图像,在嵌入空间中找到中心,选择一个阈值,看d看中心和新图像之间的余弦相似度是小于还是大于它。

  1. from dataclasses import dataclass, field  
  2. from typing import List, Callable  
  3. from PIL import Image  
  4.   
  5. @dataclass  
  6. class FaceUnlock:  
  7.       
  8.     images: List[Image.Image] = field(default_factory = list)  
  9.     th: float = 0.8  
  10.     transform: Callable =  MTCNN(image_size=160, margin=18)  
  11.     embedder: torch.nn.Module = InceptionResnetV1(pretrained='vggface2').eval()  
  12.     center: torch.Tensor = None  
  13.   
  14.     def __post_init__(self):  
  15.         faces = torch.stack(list(map(self.transform, self.images)))  
  16.         embds = self.embedder(faces)  
  17.   
  18.         self.center = embds.sum(0) / embds.shape[0]  
  19.       
  20.     def __call__(self, x: Image.Image) -> bool:  
  21.         face = self.transform(x)  
  22.         emb = self.embedder(face.unsqueeze(0))  
  23.   
  24.         similarity = torch.cosine_similarity(emb.view(1, -1), self.center.view(1, -1))  
  25.         is_me =  similarity > self.th  
  26.   
  27.         return is_me, similarity  
  28.   
  29. load pictures of myself  
  30. me = data_root / 'faces' / 'me'  
  31. images = list(map(Image.open, me.glob('*')))  
  32. # initialize face unlock with my images  
  33. face_unlock = FaceUnlock(images)  
  34.   
  35. from ipywidgets import interact, interactive, fixed, interact_manual  
  36.   
  37. def unlock_with_filepath(path):  
  38.     img = Image.open(path)  
  39.       
  40.     is_me, similarity =  face_unlock(img)  
  41.     print(f"{'' if is_me else ''} similarity={similarity.item():.3f}")  
  42.   
  43.     fig = plt.figure()  
  44.     plt.imshow(img)  
  45.     plt.plot()  
  46.   
  47. test_root = data_root / 'faces_test'  
  48.   
  49. interact(unlock_with_filepath, path=list(test_root.glob('*')))  

 

 

 

 

 

相似度得分比以前的图像高,所以我猜是真的!

让我们尝试自己的新自拍

 

 

总结

我们已经看到了一种仅使用2D数据(图像)创建人脸解锁算法的有吸引力的方法。 它依靠神经网络对相似面孔彼此靠近的高维向量空间中的裁剪面孔进行编码。 但是,我不知道该模型是如何训练的,并且可能很容易弄糊涂(即使在我的实验中该算法效果很好)。

如果在没有数据扩充的情况下训练模型怎么办? 然后,可能只是翻转同一个人可能会破坏潜在的表示。

更加健壮的训练例程将是无监督的(类似于BYOL),它严重依赖于数据增强。

 

来源:今日头条内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯