文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

PyTorch中torch.manual_seed()如何使用

2023-07-02 09:10

关注

这篇文章主要介绍“PyTorch中torch.manual_seed()如何使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“PyTorch中torch.manual_seed()如何使用”文章能帮助大家解决问题。

一、torch.manual_seed(seed) 介绍

torch.manual_seed(seed) 功能描述

设置 CPU 生成随机数的 种子 ,方便下次复现实验结果。

为 CPU 设置 种子 用于生成随机数,以使得结果是确定的。

当你设置一个随机种子时,接下来的随机算法生成数根据当前的随机种子按照一定规律生成。
随机种子作用域是在设置时到下一次设置时。要想重复实验结果,设置同样随机种子即可。

语法

torch.manual_seed(seed) → torch._C.Generator

参数

seed,int类型,是种子 – CPU生成随机数的种子。取值范围为 [-0x8000000000000000, 0xffffffffffffffff] ,十进制是 [-9223372036854775808, 18446744073709551615] ,超出该范围将触发 RuntimeError 报错。

返回

返回一个torch.Generator对象。

二、类似函数的功能

为CPU中设置种子,生成随机数:

torch.manual_seed(number)

为特定GPU设置种子,生成随机数:

torch.cuda.manual_seed(number)

为所有GPU设置种子,生成随机数:

# 如果使用多个GPU,应该使用torch.cuda.manual_seed_all()为所有的GPU设置种子。torch.cuda.manual_seed_all(number)

使用原因 :

在需要生成随机数据的实验中,每次实验都需要生成数据。设置随机种子是为了确保每次生成固定的随机数,这就使得每次实验结果显示一致了,有利于实验的比较和改进。使得每次运行该 .py 文件时生成的随机数相同。

三、实例

实例 1 :不设随机种子,生成随机数

# test.pyimport torchprint(torch.rand(1)) # 返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数

每次运行test.py的输出结果都不相同:

tensor([0.4351])

tensor([0.3651])

tensor([0.7465])

实例 2 :设置随机种子,使得每次运行代码生成的随机数都一样

# test.pyimport torch# 设置随机种子torch.manual_seed(0)# 生成随机数print(torch.rand(1)) # 返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数

每次运行 test.py 的输出结果都是一样:

tensor([0.4963])

实例 3 :不同的随机种子生成不同的值

改变随机种子的值,设为 1 :

# test.pyimport torchtorch.manual_seed(1)print(torch.rand(1)) # 返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数

每次运行 test.py,输出结果都是:

tensor([0.7576])

改变随机种子的值,设为 5 :

# test.pyimport torchtorch.manual_seed(5)print(torch.rand(1)) # 返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数

每次运行 test.py,输出结果都是:

tensor([0.8303])

可见不同的随机种子能够生成不同的随机数。

但只要随机种子一样,每次运行代码都会生成该种子下的随机数。

实例 4 :设置随机种子后,是每次运行test.py文件的输出结果都一样,而不是每次随机函数生成的结果一样# test.pyimport torchtorch.manual_seed(0)print(torch.rand(1))print(torch.rand(1))

输出结果:

tensor([0.4963])
tensor([0.7682])

可以看到两次打印 torch.rand(1) 函数生成的结果是不一样的,但如果你再运行test.py,还是会打印:

tensor([0.4963])
tensor([0.7682])

实例 5 :如果你就是想要每次运行随机函数生成的结果都一样,那你可以在每个随机函数前都设置一模一样的随机种子

# test.pyimport torchtorch.manual_seed(0)print(torch.rand(1))torch.manual_seed(0)print(torch.rand(1))

输出结果:

tensor([0.4963])
tensor([0.4963])

关于“PyTorch中torch.manual_seed()如何使用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注编程网行业资讯频道,小编每天都会为大家更新不同的知识点。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯