文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

六种人工智能代理(AI Agent)类型

2024-11-29 23:18

关注

AI Agent 是一个由人工智能驱动的虚拟助手,它能够帮助实现流程自动化、生成见解、提升效率。可以作为员工或合作伙伴帮助实现人类赋予的目标。

恒温器就是一个简单的AI Agent例子,它可以根据特定的时间调节加热达到特定的温度。它通过温度传感器和时钟感知环境。它通过一个开关采取行动,可以根据实际温度或时间打开或关闭加热。恒温器可以通过添加AI功能变成一个更复杂的AI代理,使其能够从居住在房子里的人的习惯中学习。

AI Agent可以根据Agent的行为对感知智能和能力的影响模式,分为不同类型。

本文主要介绍6种不同的AI Agent。包括:

1.Simple reflex agents:简单反射代理

简单的反射代理是一个可以根据预定义规则做出决策的AI系统。它只对当前的情况作出反应,而不考虑过去或未来的后果。

简单的反射代理适合于具有稳定的规则和直接行动的环境,因为它的行为纯粹是反应性的,对环境变化能够即时做出响应。

(1) 原理:

简单反射代理通过遵循条件、操作规则来执行其功能,该规则指定在特定条件下要采取的操作。

(2) 例子:

一个基于规则的系统,用于实现智能客服。如果客户的消息包含“密码重置”的关键字,则系统可以自动生成包含关于重置密码的指令的预定义响应。

(3) 优势:

(4) 弱势:

2.Model-based agents:基于模型的代理

基于模型的代理,基于当前的感知和表示不可观察单词的内部状态来执行动作。它基于两个因素来更新其内部状态:

(1) 原理:

基于模型的代理遵循条件+动作规则,该规则指定在给定情况下要采取的适当动作。但与简单的反射代理不同,基于模型的代理还使用其内部状态来评估决策和行动过程中的条件。

基于模型的代理分四个阶段运行:

(2) 例子:

https://aws.amazon.com/cn/bedrock/

基于模型的代理最好的例子之一是:Amazon Bedrock。Amazon Bedrock是一项使用基础模型来模拟运营、获得见解并做出明智的决策,以实现有效的规划和优化的服务。

通过各种模型Bedrock可以获得洞察力,预测结果并做出明智的决策。它不断使用真实数据改进其模型,使其能够适应和优化其运营。

然后,Amazon Bedrock针对不同的场景进行规划,并通过模拟和调整模型参数来选择最佳策略。

(3) 优势:

(4) 弱势:

3.Goal-based agents:基于目标的代理

基于目标的代理是利用环境信息来实现特定目标的人工智能智能体。他们使用搜索算法在给定的环境中找到实现目标的最有效路径。

这些代理也称为基于规则的代理,因为它们遵循预定义的规则来实现目标,并根据特定条件采取特定行动。

基于目标的代理易于设计,可以处理复杂的任务。它们可以用于各种应用,如机器人、计算机视觉和自然语言处理等。

与基本模型不同,基于目标的代理可以根据其期望的结果或目标来确定决策和行动过程的最佳路径。

(1) 原理:

给定一个计划,基于目标的代理会试图选择最佳策略来实现目标,然后使用搜索算法来找到到达目标的有效路径。

基于目标的代理的工作模式可以分为五个步骤:

(2) 例子:

https://blog.google/technology/ai/bard-google-ai-search-updates/

Google Bard 是一个学习的媒介。从某种意义上来说它也是一个基于目标的代理。作为一个基于目标的代理,它的目标是为用户查询并提供高质量的响应。它选择的行动可能有助于用户找到他们所需要的信息,并实现他们获得准确和有用的回复的预期目标。

(3) 优势:

(4) 弱势:

4.Utility-based agents:基于效用的代理

基于效用的代理是基于效用函数或价值最大化做出决策的AI代理。他们选择具有最高预期效用的行动,这个选择的结果决定了最终结果的好坏。这种模式更具灵活性、适应性地处理复杂情况下的任务。

基于效用的代理通常用于必须在多个选项中进行比较和选择,例如:资源如何分配、任务如何调度、游戏如何进行。

(1) 原理:

(2) 例子:

https://www.anthropic.com/news/introducing-claude

 Anthropic Claude是一个人工智能工具,其目标是帮助持卡人最大限度地提高他们使用卡片的奖励,是一个基于效用的代理。

为了实现其目标,它采用了一个效用函数,将代表成功或幸福的数值分配给不同的状态(持卡人面临的情况,如:购买、支付账单、兑换奖励等)。然后比较每个状态下不同行为的结果,并根据其效用值进行权衡决策。

此外,它使用启发式和人工智能技术来简化和改进决策。

(3) 优势:

(4) 弱势:

5.Learning agents:学习代理

学习代理是一种可以从过去的经验中学习并提高模型性能的模式。最初的代理具备基础的知识,并通过机器自动适应学习,不断成长。

学习代理包括四个主要组件:

(1) 原理:

AI学习代理遵循一个基于反馈的观察、学习和行动的闭环。他们与环境互动,从反馈中学习,并为未来的互动修正自己的行为。

以下是这个闭环的工作过程:

这个循环的过程会随着时间的推移而重复,使代理能够不断提高其性能并适应不断变化的环境。

(2) 例子:

https://dataconomy.com/2023/04/13/what-is-autogpt-and-how-to-use-ai-agents/

AutoGPT是学习代理的一个很好的例子,假设你想买一部智能手机。所以,你给予AutoGPT一个提示,让它对十大智能手机进行市场研究,提供关于它们利弊的见解。

为了完成你的任务,AutoGPT将通过探索各种网站和来源来分析十大智能手机的利弊。使用子代理程序评估网站的真实性。最后,它会生成一份详细的报告,总结调查结果,并列出十大智能手机公司的利弊。

(3) 优势:

(4) 弱势:

6.Hierarchical agents:层级代理

层级代理是一种层次化结构,可以包含高级代理、低级代理,高级代理监督低级代理。但是,这些级别可能会根据系统的复杂性而有所不同。

分层代理的应用场景如:机器人、制造、运输等。它擅长协调、处理多任务和子任务。

(1) 原理:

分层代理的工作方式就像一个公司的组织。它们将任务组织在由不同级别组成的结构化层次结构中,其中更高级别的代理监督并将目标分解为更小的任务。

随后,较低级别的代理执行这些任务并提供进度报告。

在复杂系统的情况下,可能会有中级代理人协调较低级别代理人与较高级别代理人的活动。

(2) 例子:

https://research.google/blog/unipi-learning-universal-policies-via-text-guided-video-generation/

Google的UniPi就是一种创新的AI分层代理,它利用文本和视频作为通用接口,使其能够在各种环境中学习各种任务。

UniPi包括一个生成指令和演示的高级策略和一个执行任务的低级策略。高级策略适应各种环境和任务,而低级策略通过模仿和强化学习进行学习。

这种层次结构使UniPi能够有效地将高级推理和低级执行相结合。

(3) 优势:

(4) 弱势:

总结

随着最近大语言模型的快速迭代升级,AI代理已不再是新事物,当我们把多个代理放在一起,创造一个团队的代理能力将远远超过一个单独的代理。从维持家庭温度的简单反射代理到驾驶汽车的更高级代理,AI代理将无处不在。未来每个人都可以更容易地创建自己的代理和自己的代理团队。它使人们能够在几分钟内完成可能需要几小时或几天的任务!

来源:andflow内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯