文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何用Pyecharts生成云词

2023-06-01 23:23

关注

本篇内容介绍了“如何用Pyecharts生成云词”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

前言

首先我们得先了解两个概念——上胸围 & 下胸围,具体看示意图:

如何用Pyecharts生成云词

通过上胸围与下胸围的差值,我们就可以确定罩杯的大小了,具体的对应关系可参考下图:

如何用Pyecharts生成云词

有了下胸围 & 罩杯就能确定文胸对应的尺码了~
当然这又有分为英式尺码和国际尺码,具体参考下图:

如何用Pyecharts生成云词

from pyecharts.charts import *from pyecharts import options as optsfrom pyecharts.commons.utils import JsCodefrom collections import Counterimport reimport pandas as pdimport jiebaimport jieba.posseg as psgfrom stylecloud import gen_stylecloudfrom IPython.display import Image

数据处理

原始数据是txt格式,为了方便处理,这边转为Dataframe~

尺码部分通过正则表达式提取出对应的下胸围和罩杯,具体代码如下:

In [2]:

patterns = re.compile(r'(?P<datetime>.*),颜色分类:(?P<color>.*?);尺码:(?P<size>.*?),(?P<comment>.*)')with open('/home/kesci/input/cup6439/cup_all.txt', 'r') as f:    data = f.readlines()obj_list = []for item in data:    obj = patterns.search(item)    obj_list.append(obj.groupdict())    data = pd.DataFrame(obj_list)data = pd.concat([data, data['size'].str.extract('(?P<circumference>[7-9]{1}[0|5]{1}).*(?P<cup>[a-zA-Z])',                                           expand=True)], axis=1)data.head()

Out[2]:


colorcommentdatetimesizecircumferencecup
0肤色薄款不错给婆婆买的,准备再买两件2017-04-20 13:06:0438/85C85C
1H007宝蓝色加粉色和想象的一样好!价格实惠!拢胸效果很好穿着舒服,就是我要的是宝蓝加肤色!给发了一件粉色,也不...2017-04-23 21:44:2034/75B75B
2超薄杯纯洁白真的不错2017-05-18 10:36:3180C80C
3浅紫一次买了两件,内衣质量不错,无钢圈设计穿上很舒服也很有型,值得购买。2017-04-19 20:44:5136B=80B80B
4卡其色因为手机号填错了结果直接被退件了_(:_」&ang;)_但是卖家还是超好心地给我重新送了回来qwq2017-05-07 09:16:4775A75A

商品类别

我们通过jieba分词来看看商品分类中最常出现的是哪些关键词~

In [3]:

w_all = []for item in data.color:    w_l = psg.cut(item)    w_l = [w for w, f in w_l if f in ('n', 'nr') and len(w)>1]    w_all.extend(w_l)c = Counter(w_all)
Building prefix dict from the default dictionary ...Dumping model to file cache /tmp/jieba.cacheLoading model cost 0.769 seconds.Prefix dict has been built succesfully.

In [4]:

counter = c.most_common(50)bar = (Bar(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='800px'))       .add_xaxis([x for x, y in counter[::-1]])       .add_yaxis('出现次数', [y for x, y in counter[::-1]], category_gap='30%')       .set_global_opts(title_opts=opts.TitleOpts(title="出现最多的关键词",                                                  pos_left="center",                                                  title_textstyle_opts=opts.TextStyleOpts(font_size=20)),                        datazoom_opts=opts.DataZoomOpts(range_start=70, range_end=100, orient='vertical'),                        visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6e4, min_=3000, dimension=0,                                range_color=['#f5d69f', '#f5898b', '#ef5055']),                        legend_opts=opts.LegendOpts(is_show=False),                        xaxis_opts=opts.AxisOpts(is_show=False,),                        yaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False),                                                 axisline_opts=opts.AxisLineOpts(is_show=False)))       .set_series_opts(label_opts=opts.LabelOpts(is_show=True,                                                  position='right',                                                  font_style='italic'),                        itemstyle_opts={"normal": {                                                    "barBorderRadius": [30, 30, 30, 30],                                                    'shadowBlur': 10,                                                    'shadowColor': 'rgba(120, 36, 50, 0.5)',                                                    'shadowOffsetY': 5,                                                }                                       }).reversal_axis())bar.render_notebook()

Out[4]:

In [5]:

t_data = data.groupby(['circumference', 'cup'])['datetime'].count().reset_index()t_data.columns = ['circumference', 'cup', 'num']#t_data.num = round(t_data.num.div(t_data.num.sum(axis=0), axis=0) * 100, 1)data_pair = [            {"name": 'A',              "label":{"show": True},              "children": []},            {"name": 'B',              "label":{"show": True},              "children": []},            {"name": 'C',              "label":{"show": True},              'shadowBlur': 10,              'shadowColor': 'rgba(120, 36, 50, 0.5)',              'shadowOffsetY': 5,              "children": []},            {"name": 'D',              "label":{"show": False},              "children": []},            {"name": 'E',              "label":{"show": False},              "children": []}    ]for idx, row in t_data.iterrows():    t_dict = {"name": row.cup,              "label":{"show": True},              "children": []}    if row.num > 3000:        child_data = {"name": '{}-{}'.format(row.circumference, row.cup), "value":row.num, "label":{"show": True}}    else:        child_data = {"name": '{}-{}'.format(row.circumference, row.cup), "value":row.num, "label":{"show": False}}    if row.cup == "A":        data_pair[0]['children'].append(child_data)       elif row.cup == "B":        data_pair[1]['children'].append(child_data)       elif row.cup == "C":        data_pair[2]['children'].append(child_data)      elif row.cup == "D":        data_pair[3]['children'].append(child_data)      elif row.cup == "E":        data_pair[4]['children'].append(child_data)

尺码分布

In [6]:

c = (Sunburst(        init_opts=opts.InitOpts(            theme='purple-passion',            width="1000px",            height="1000px"))    .add(        "",        data_pair=data_pair,        highlight_policy="ancestor",        radius=[0, "100%"],        sort_='null',        levels=[            {},            {                "r0": "20%",                "r": "48%",                "itemStyle": {"borderColor": 'rgb(220,220,220)', "borderWidth": 2}            },            {"r0": "50%", "r": "80%", "label": {"align": "right"},                "itemStyle": {"borderColor": 'rgb(220,220,220)', "borderWidth": 1}}        ],    )    .set_global_opts(        visualmap_opts=opts.VisualMapOpts(is_show=False, max_=90000, min_=3000,                                 range_color=['#f5d69f', '#f5898b', '#ef5055']),        title_opts=opts.TitleOpts(title="文 胸\n\n尺 码 分 布",                                               pos_left="center",                                               pos_top="center",                                               title_textstyle_opts=opts.TextStyleOpts(font_style='oblique', font_size=30),))    .set_series_opts(label_opts=opts.LabelOpts(font_size=18, formatter="{b}: {c}")))c.render_notebook()

Out[6]:

罩杯分布

我们通过不同的胸围来看看罩杯的比例:

In [7]:

grid = Grid(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='1000px'))for idx, c in enumerate(['70', '75', '80', '85', '90', '95']):        if idx % 2 == 0:        x = 30        y = int(idx/2) * 30 + 20    else:        x = 70        y = int(idx/2) * 30 + 20    pos_x = str(x)+'%'    pos_y = str(y)+'%'        pie = Pie(init_opts=opts.InitOpts())        pie.add(            c,            [[row.cup, row.num]for i, row in t_data[t_data.circumference==c].iterrows()],            center=[pos_x, pos_y],            radius=[70, 100],            label_opts=opts.LabelOpts(formatter='{b}:{d}%'),    )        pie.set_global_opts(        title_opts=opts.TitleOpts(title="下胸围={}".format(c),                                  pos_top=str(y-1)+'%', pos_left=str(x-4)+'%',                                  title_textstyle_opts=opts.TextStyleOpts(font_size=15)),        legend_opts=opts.LegendOpts(is_show=True))    grid.add(pie,grid_opts=opts.GridOpts(pos_left='20%'))grid.render_notebook()

Out[7]:

评论词云

最后我们来看看评论中经常说到的是什么词语吧~

In [8]:

w_all = []for item in data.comment:    w_l = jieba.lcut(item)    w_all.extend(w_l)c = Counter(w_all)

In [10]:

gen_stylecloud(' '.join(w_all),              size=1000,              #max_words=1000,              font_path='/home/kesci/work/font/simhei.ttf',              #palette='palettable.tableau.TableauMedium_10',              icon_name='fas fa-heartbeat',              output_name='comment.png',              custom_stopwords=['没有','用户','填写','评论']              )Image(filename='comment.png')

Out[10]:

如何用Pyecharts生成云词

“如何用Pyecharts生成云词”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯