文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

怎么让python程序正确高效地并发

2023-07-02 07:50

关注

这篇文章主要介绍“怎么让python程序正确高效地并发”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么让python程序正确高效地并发”文章能帮助大家解决问题。

python线程何时需要拥有GIL?

GIL 是 CPython 解释器的实现的一部分,它是一个线程锁:在一个给定的时间只有一个线程可以获取锁。因此,要了解 GIL 如何影响 Python 的多线程并行能力,我们首先需要回答一个关键问题:Python 线程何时需要持有 GIL?

认知模型1:同一时刻只有一个线程运行python代码

考虑以下代码; 它在两个线程中运行函数 go():

import threadingimport timedef go():    start = time.time()    while time.time() < start + 0.5:        sum(range(10000))def main():    threading.Thread(target=go).start()    time.sleep(0.1)    go()main()

当我们使用 Sciagraph 性能分析器运行它时,执行时间线如下所示:

怎么让python程序正确高效地并发

注意:线程是如何在 CPU 上等待和运行之间来回切换的:运行代码持有 GIL,等待线程正在等待 GIL。

如果 GIL 5 毫秒(或其他可配置的时间间隔)没有释放,Python 会告诉当前正在运行的线程释放 GIL。下一个线程拿到GIL后就可以运行。如上图所示,我们看到两个线程之间来回切换;实际显示的间隔长于 5 毫秒,因为采样分析器每 47 毫秒左右采样一次。

这就是我们最初的认知模型,或者说是对于GIL最浅层的认知:

模型2:不保证每 5 毫秒释放一次 GIL

GIL 在 Python 3.7 到 3.10 中默认每 5ms 释放一次,从而允许其他线程运行:

>>> import sys>>> sys.getswitchinterval()0.005

但是,这些版本中的GIL是尽力而为的,也就是说,其不能保证每隔5ms一定使得线程释放。考虑一个简单的伪代码,解释器在运行python线程时的逻辑如这个伪代码中的死循环所示:只有运行完一个操作后解释器python才会去检查是否释放GIL锁。

当然,python内部的实现逻辑比这个伪代码复杂的多,但是遵循的原则是相同的:

while True:    if time_to_release_gil():        temporarily_release_gil()    run_next_python_instruction()

只要 run_next_python_instruction() 没有完成,temporary_release_gil() 就不会被调用。 大多数情况下,这不会发生,因为单个操作(添加两个整数、追加到列表等)很快就可以完成。因此,解释器可以经常检查是否该释放GIL。

但是,长时间运行的操作会阻止 GIL 自动释放。 让我们编写一个小的Cython拓展,Cython是一种类似 Python的语言,其代码会转化成C/C++代码,并编译成可以被python调用的形式。下边的代码调用标准 C 库中的 sleep() 函数:

cdef extern from "unistd.h":    unsigned int sleep(unsigned int seconds)def c_sleep(unsigned int seconds):    sleep(seconds)

我们可以使用 Cython 附带的 cythonize 工具将其编译为可导入的 Python 扩展:

$ cythonize -i c_sleep.pyx...$ ls c_sleep*.soc_sleep.cpython-39-x86_64-linux-gnu.so

接下来从一个 Python 程序中调用它,该程序会创建一个新线程,并调用c_sleep()该新线程与主线程是并行的:

import threadingimport timefrom c_sleep import c_sleepdef thread():    c_sleep(2)threading.Thread(target=thread).start()start = time.time()while time.time() < start + 2:    sum(range(10000))

怎么让python程序正确高效地并发

直到睡眠线程完成前,主线程无法运行;睡眠线程根本没有释放 GIL。这是因为python在调用底层语言(如C)所编写的模块时是阻塞性的调用,只有等到调用返回结果之后,本条语句才算执行结束。而对 c_sleep(2) 的调用在2秒内没有返回。在这2秒结束之前,Python 解释器循环不会运行,因此不会检查它是否应该自动释放 GIL。

这是我们深化后的对GIL的认知:

模型3:非 Python 代码可以显式释放 GIL

time.sleep(3)使得线程3秒内什么都不做。如上所述,运行时间较长的拓展代码会阻止GIL在线程之间的自动切换。那么这是否意味当某一线程运行time.sleep()时,其他线程也不能运行?

让我们试试下面的代码,它尝试在主线程中并行运行 3 秒的睡眠和 5 秒的计算:

import threadingfrom time import time, sleepprogram_start = time()def thread():    sleep(3)    print("Sleep thread done, elapsed:", time() - program_start)threading.Thread(target=thread).start()# 在主线程中进行5秒的计算:calc_start = time()while time() < calc_start + 5:    sum(range(10000))print("Main thread done, elapsed:", time() - program_start)

运行后的结果为:

$ time python gil2.py Sleep thread done, elapsed: 3.0081260204315186Main thread done, elapsed: 5.000330924987793real    0m5.068suser    0m4.977ssys     0m0.011s

如果程序只能单线程的运行,那么程序运行时长需要8秒,3秒用于睡眠,5秒用于计算。从上边的结果可以看出,睡眠线程和主线程并行运行!

Sciagraph 性能分析器的输出如下图所示:

怎么让python程序正确高效地并发

想要了解这个现象的原因,需要我们阅读time.sleep的实现代码:

        int ret;        Py_BEGIN_ALLOW_THREADS#ifdef HAVE_CLOCK_NANOSLEEP        ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &timeout_abs, NULL);        err = ret;#elif defined(HAVE_NANOSLEEP)        ret = nanosleep(&timeout_ts, NULL);        err = errno;#else        ret = select(0, (fd_set *)0, (fd_set *)0, (fd_set *)0, &timeout_tv);        err = errno;#endif        Py_END_ALLOW_THREADS

根据 PY_BEGIN/END_ALLOW_THREADS 的文档,Py_BEGIN_ALLOW_THREADS会使得程序自动的释放GIL锁,然后去执行阻塞操作,当程序运行到Py_END_ALLOW_THREADS时才会申请GIL锁。因此,上边的C实现在调用底层操作系统睡眠函数时会显式释放GIL。这是GIL释放的另一种方式,它与我们目前知道的每 5 毫秒自动切换一次是相互独立的。

任何已释放 GIL 并且不尝试申请它的代码(比如上文的sleep()期间)都不会阻塞其他申请GIL的线程。 因此,只要程序能够显式释放 GIL,我们可以并行运行任意数量的线程。

所以这是我们的第三层认知:

模型4:调用 Python C API 需要 GIL

到目前为止,我们已经说过python调用的C代码能够在某些情况下主动释放GIL。但是,线程调用 CPython C API时都必须持有 GIL。

当线程调用CPython C API时必须持有GIL,只有很少的API不需要持有GIL

(CPython C API可以使得Python程序调用已编译的利用C/C++编写的代码片段,Python 语言和标准库的大部分核心功能都是用 C 编写的)

所以这是我们最终的认知模型:

什么场景适合利用python的并发?

当调用运行时间较长的,用C编写的API时应当主动释放GIL

python多线程最有用的情况是,线程调用长时间运行的C/C++/RUST代码,因此会长时间的不需要调用CPython C API,此时就可以让线程释放GIL从而允许其他线程运行。

不适合并发的场景:

所谓的纯python代码,指的是代码只与python内置的对象,如字典,整数,列表交互,并且代码也不会阻塞性的调用底层代码,这样的代码会频繁地使用Python C API:

l = []for i in range(i):    l.append(i * i)

此时搞线程并发并没有太大的意义

使用Python C API的低级代码

另一种不会获得太多并行性的情况是:在C/Rust扩展中需要使用大量的Python C API。例如,考虑一个读取以下字符串的 JSON 解析器:

[1, 2, 3]

解析器将:

创建所有这些 Python 对象需要使用 CPython C API,因此需要持有 GIL。由于反复占有和释放 GIL 会降低程序的性能,而且大多数 JSON 文档都可以非常快速地解析。 因此,JSON解析器的开发者当然会选择在整个处理过程结束之前都不释放GIL,但这也导致json解析器解析期间,程序只能线性运行。

让我们通过观察当我们在两个线程中读取两个大文档时,Python的内置JSON解析器如何影响并行性来验证这个假设。代码如下所示:

import jsonimport threadingdef load_json():    with open("large.json") as f:        return json.load(f)threading.Thread(target=load_json).start()load_json()

性能分析器的结果如下所示:

怎么让python程序正确高效地并发

很明显,同时运行两个json解析器时,线程之间完全没有并行

关于“怎么让python程序正确高效地并发”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注编程网行业资讯频道,小编每天都会为大家更新不同的知识点。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯