文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

一文揭开 NVIDIA CUDA 神秘面纱

2024-11-28 14:47

关注

CUDA,作为现代图形处理器(GPU)的计算单元,在高性能计算领域扮演着日益重要的角色。通过将复杂的计算任务分解为数千个线程并行执行,CUDA 显著提升了计算速度,为人工智能、科学计算、高性能计算等领域带来了革命性的变革。

CUDA 到底是什么 ?

毋庸置疑,你一定听说过 CUDA,并了解这玩意与 NVIDIA GPU 密切相关。然而,关于 CUDA 的具体定义和功能,许多人仍然心存疑惑,一脸懵逼。CUDA 是一个与 GPU 进行通信的库吗?

如果是,它属于 C++ 还是 Python 库?或者,CUDA 实际上是一个用于 GPU 的编译器?了解这些问题有助于更好地掌握 CUDA 的核心特性及其在 GPU 加速中的作用。

CUDA,全称为 “ Compute Unified Device Architecture ”,即“计算统一设备架构”,是 NVIDIA 推出的一套强大并行计算平台和编程模型框架,为开发人员提供了加速计算密集型应用的完整解决方案。CUDA 包含运行时内核、设备驱动程序、优化库、开发工具和丰富的 API 组合,使得开发人员能够在支持 CUDA 的 GPU 上运行代码,大幅提升应用程序的性能。这一平台尤为适合用于处理大规模并行任务,如深度学习、科学计算以及图像处理等领域。

通常而言,“CUDA” 不仅指平台本身,也可指为充分利用 NVIDIA GPU 的计算能力而编写的代码,这些代码多采用 C++ 和 Python 等语言编写,以充分发挥 GPU 加速的优势。借助 CUDA,开发人员能够更加轻松地将复杂的计算任务转移至 GPU 运行,极大提升应用程序的运行效率。

因此,总结起来,我们可以得出如下结论:

CUDA 不仅仅是一个简单的库,它是一个完整的平台,为开发者提供了利用 GPU 进行高效并行计算的全方位支持。这个平台的核心组件包括:

相关的环境变量可参考如下:

借助这一完整的开发平台,开发者能够充分挖掘 NVIDIA GPU 的计算潜力,将复杂的并行计算任务高效地分配至 GPU 上执行,从而实现应用程序性能的极大提升。

CUDA 是如何工作的 ?

现代 GPU 由数千个小型计算单元组成,这些单元被称为 CUDA 核心。CUDA 核心能够高效并行工作,使 GPU 能够快速处理那些可以分解为多个小型独立操作的任务。这种架构使得 GPU 不仅适用于图形渲染任务,也适用于计算密集型的科学计算和机器学习等非图形任务。

作为 NVIDIA 提供的一个计算平台和编程模型,CUDA 专门为 GPU 开放了这些强大的并行处理能力。通过 CUDA,开发者可以编写代码,将复杂的计算任务移交给 GPU。以下是 CUDA 的工作原理:

(1) 并行处理

CUDA 将计算任务分解为多个可以独立运行的小任务,并将这些任务分配到多个 CUDA 核心上并行执行。这样一来,与传统 CPU 顺序执行的模式相比,GPU 可以在相同时间内完成更多的计算,从而极大地提升计算效率。

(2) 线程和块的架构

在 CUDA 编程模型中,计算任务被进一步划分为线程,每个线程独立处理一部分数据。这些线程被组织成块,每个块中包含一定数量的线程。这种层次化结构不仅便于管理海量线程,还提高了执行效率。多个线程块可以同时运行,使得整个任务可以快速并行完成。

(3) SIMD 架构

CUDA 核心采用单指令多数据(Single Instruction, Multiple Data,简称 SIMD)架构。这意味着单条指令可以对多个数据元素同时执行操作。例如,可以用一条指令对大量数据元素进行相同的计算,从而加快数值计算的速度。这种架构对矩阵运算、向量处理等高并行任务极为高效,特别适用于深度学习模型训练、图像处理和模拟仿真等领域。

基于这些特性,CUDA 不仅为高性能并行计算提供了直接途径,也将 NVIDIA GPU 的强大计算潜力拓展至科学计算、人工智能、图像识别等领域,为开发者实现复杂计算任务的加速提供了强有力的支持。

CUDA 编程模型

在 CUDA 编程中,开发者通常需要编写两部分代码:主机代码(Host Code)和设备代码(Device Code)。

主机代码在 CPU 上运行,负责与 GPU 进行交互,包括数据传输和资源管理;而设备代码则在 GPU 上执行,承担主要计算任务。二者相互配合,充分利用 CPU 和 GPU 的协同处理能力,以达到高效并行计算的目的。

(1) 主机代码:主机代码运行在 CPU 上,负责控制整个程序的逻辑流程。它管理 CPU 和 GPU 之间的数据传输,分配和释放 GPU 资源,并配置 GPU 内核参数。这部分代码不仅定义了如何组织数据并将其发送到 GPU,还包含了启动设备代码的指令,从而让 GPU 接管计算密集的任务。主机代码起到管理和协调的作用,确保 CPU 与 GPU 之间的高效协作。

此部分包括数据传输、内存管理、以及启动 GPU 内核等,具体功能可参考如下所示:

(2) 设备代码:设备代码编写的核心部分是在 GPU 上执行的计算函数,通常被称为内核(Kernel)。每个内核函数在 GPU 的众多 CUDA 核心上并行执行,能够快速处理大量数据。设备代码专注于数据密集型的计算任务,在执行过程中充分利用 GPU 的并行计算能力,使得计算速度比传统的串行处理有显著提升。

设备代码定义了 GPU 的计算逻辑,使用 CUDA 内核来并行处理大量数据。

(3) 内核启动:内核启动是 CUDA 编程的关键步骤,由主机代码启动设备代码内核,在 GPU 上触发执行。内核启动参数指定了 GPU 上线程的数量和分布方式,使内核函数可以通过大量线程并行运行,从而加快数据处理速度。通过适当配置内核,CUDA 编程能以更优的方式利用 GPU 资源,提高应用的计算效率。

在整个体系中,这一步骤至关重要,它控制了设备代码的并行性、效率及运行行为。具体可参考如下:

通过有效协调这三者,CUDA 编程能够实现对数据密集型任务的高速并行处理,为高性能计算提供了一个极具扩展性的解决方案。

CUDA 内存层次结构体系

在 CUDA 编程中,GPU 内存的结构是多层次的,具有不同的速度和容量特性。CUDA 提供了多种内存类型,用于不同的数据存储需求。合理利用这些内存可以显著提升计算效率。以下是各类内存的详细描述:

(1) 全局内存(Global Memory)

全局内存是 GPU 上容量最大的存储空间,通常为几 GB,并且是 GPU 的主要数据存储区。全局内存可以被所有线程访问,也可以与 CPU 共享数据,但其访问速度相对较慢(相对于其他 GPU 内存类型而言),因此需要避免频繁访问。数据传输操作也较耗时,因此全局内存常用于存储较大的数据集,但会优先考虑数据访问的批处理或其他缓存策略来减少其频繁调用。

通常而言,全局内存主要适用于存储程序的大部分输入输出数据,尤其是需要 GPU 和 CPU 共享的大容量数据。

示例:在矩阵乘法中,两个矩阵的元素可以存储在全局内存中,以便所有线程都可以访问。

__global__ void matrixMultiplication(float *A, float *B, float *C, int N) {
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;
    float sum = 0.0;
    for (int i = 0; i < N; ++i) {
        sum += A[row * N + i] * B[i * N + col];
    }
    C[row * N + col] = sum;
}

(2) 共享内存(Shared Memory)

共享内存是分配在 GPU 每个线程块内部的高速缓存,其访问速度远高于全局内存,但容量较小(通常为每块 48 KB 或更少)。共享内存是线程块内线程共享的,适合存储需要在一个线程块内频繁访问的数据。由于它存储在各自的块内,每个块内的线程可以在共享内存中快速读写数据,从而减少对全局内存的访问。

相对于全局内存,共享内存更多适用于多线程间的数据交换,尤其是需在一个线程块内反复使用的数据。

示例:在矩阵乘法中,A 和 B 的子块可以加载到共享内存中,以便线程块中的所有线程都可以快速访问。

__shared__ float sharedA[TILE_SIZE][TILE_SIZE];
__shared__ float sharedB[TILE_SIZE][TILE_SIZE];

(3) 本地内存(Local Memory)

本地内存是分配给每个线程的私有内存,主要用于存储线程的私有变量。尽管称为“本地”,它实际上是分配在全局内存中,因此访问速度较慢,接近全局内存的访问速度。由于本地内存容量有限且其访问开销较高,建议只在必要时使用。

通常情况下,本地内存适用于存储线程的临时变量、私有数据或不适合在寄存器中保存的数据。

示例:对于复杂计算中的中间变量,可以放置在本地内存中,以便线程之间不发生冲突。

int localVariable = 0;  // 本地内存中的变量

(4) 常量和纹理内存(Constant and Texture Memory)

常量内存和纹理内存分别是 CUDA 提供的专用于只读数据的内存类型,具有特殊的缓存机制,能够在特定访问模式下加快数据读取。常量内存用于存储不会更改的常量数据,而纹理内存适合存储二维或三维数据,通过纹理缓存可以提高访问速度。

常量内存(Constant Memory):仅可由 CPU 写入,但可被所有 GPU 线程读取。适合存储小规模的、不变的数据(如配置信息、系数等)。

纹理内存(Texture Memory):专门优化以支持二维或三维数据的读取,对于非顺序或稀疏访问模式的数据(如图像数据)具有较高的访问效率。

示例:在图像处理应用中,将像素数据加载到纹理内存中,让 GPU 利用其特定的缓存机制来优化访问效率。

__constant__ float constData[256];  // 常量内存

cudaArray* texArray;
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc();
cudaMallocArray(&texArray, &channelDesc, width, height);  // 纹理内存

CUDA平台为开发人员提供了对CUDA GPU并行计算资源的深度访问,允许直接操作GPU的虚拟指令集和内存。通过使用CUDA,GPU可以高效地处理数学密集型任务,从而释放CPU的计算资源,使其能够专注于其他任务。这种架构与传统GPU的3D图形渲染功能有着本质的区别,开创了GPU在计算领域的新用途。

在CUDA平台的架构中,CUDA核心是其核心组成部分。每个CUDA核心都是一个独立的并行处理单元,负责执行各种计算任务。GPU中的CUDA核心数量越多,它能够并行处理的任务就越多,从而显著提升计算性能。通过这种并行计算,CUDA平台能够在复杂的计算过程中实现大规模任务的并行处理,提供卓越的性能和高效性。

Reference :

来源:架构驿站内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯