这篇文章的内容主要围绕如何在Linux上构建RAID10阵列进行讲述,文章内容清晰易懂,条理清晰,非常适合新手学习,值得大家去阅读。感兴趣的朋友可以跟随小编一起阅读吧。希望大家通过这篇文章有所收获!
RAID 10是一个冗余的备份阵列,由个Raid 1与Raid0的组合而成,继承了Raid0的快速和Raid1的安全,实现高性能和高容错性的磁盘I/O。
注意RAID 10的优缺点和其它分区方法(在不同大小的磁盘和文件系统上)的内容不在下面讨论的范围内。
Raid 10 阵列如何工作?
如果你需要实现一种支持I/O密集操作(比如数据库、电子邮件或web服务器)的存储解决方案,RAID 10就是你需要的。来看看为什么这么说,请看下图。
上图中的文件由A、B、C、D、E和F六种块组成,每一个RAID 1镜像对(如镜像1和2)在两个磁盘上复制相同的块。在这样的配置下,写操作性能会因为每个块需要写入两次而下降,每个磁盘各一次;而读操作与从单块磁盘中读取相比并未发生改变。不过这种配置的好处是除非一个镜像中有超过一块的磁盘故障,否则都能保持冗余以维持正常的磁盘I/O操作。
RAID 0的分区通过将数据划分到不同的块,然后执行同时将块A写入镜像1、将块B写入镜像2(以此类推)的并行操作以提高整体的读写性能。在另一方面,没有任何一个镜像包含构成主存的数据片的全部信息。这就意味着如果其中一个镜像故障,那么整个RAID 0组件将无法正常工作,数据将遭受不可恢复的损失。
建立RAID 10阵列
有两种建立RAID 10阵列的可行方案:复杂法(一步完成)和嵌套法(先创建两个或更多的RAID 1阵列,然后使用它们组成RAID 0)。本文会讲述复杂法创建RAID 10阵列的过程,因为这种方法能够使用偶数或奇数个磁盘去创建阵列,而且能以单个RAID设备的形式被管理,而嵌套法则恰恰相反(只允许偶数个磁盘,必须以嵌套设备的形式被管理,即分开管理RAID 1和RAID 0)。
假设你的机器已经安装mdadm,并运行着相应的守护进程,细节参见这篇文章。也假设每个磁盘上已经划分出一个主分区sd[bcdef]1 (LCTT 译注:共计五块磁盘,这里是从sdb – sdf)。使用命令:
ls -l /dev | grep sd[bcdef]
查看到的输出应该如下所示:
然后使用下面的命令创建一个RAID 10阵列(LCTT 译注:使用了四块磁盘 bcde 创建):
# mdadm --create --verbose /dev/md0 --level=10 --raid-devices=4 /dev/sd[bcde]1 --spare-devices=1 /dev/sdf1
当阵列创建完毕后(最多花费几分钟),执行命令
# mdadm --detail /dev/md0
的输出应如下所示:
在更进一步之前需要注意以下事项。
Used Dev Space表示阵列所使用的每一块磁盘的容量。
Array Size表示阵列的整体大小。RAID 10阵列的大小通过(N*C)/M计算,其中N是活跃磁盘的数目,C是每个活跃磁盘的容量,M是每一个镜像中磁盘的数目。在本文的情形下,这个值等于(4*8GiB)/2 = 16GiB。
Layout是整个数据布局的详细信息。可能的布局数值如下所示。
n(默认选项):代表就近(near)拷贝。一个数据块的多个拷贝在不同磁盘里有相同的偏移量。这种布局提供和RAID 0阵列相似的读写性能。
o代表偏移量(offset)拷贝。块并不是在条带里面复制的,而是整个条带一起复制,但是循环会打乱,所以同一个分区中复制的块会出现在不同的磁盘。因此,一个块的后续拷贝会出现在下一个磁盘中,一个块接着一个块。为了在RAID 10阵列中使用这种布局,在创建阵列的命令中添加–layout=o2选项。
f代表远端(far)拷贝(多个拷贝在不同的磁盘中具有不同的偏移量)。这种布局提供更好的读性能但带来更差的写性能。因此,对于读远远多于写的系统来说是最好的选择。为了在RAID 10阵列中使用这种布局,在创建阵列的命令中添加–layout=f2。
跟在布局选项n、f和o后面的数字代表所需的每一个数据块的副本数目。默认值是2,但可以是2到阵列中磁盘数目之间的某个值。提供足够的副本数目可以最小化单个磁盘上的I/O影响。
Chunk Size,参考Linux RAID wiki的说明,是写入磁盘的最小数据单元。最佳的chunk大小取决于I/O操作的速率和相关的文件大小。对于大量的写操作,通过设置相对较大的chunk可以得到更低的开销,但对于主要存储小文件的阵列来说更小的chunk性能更好。为了给RAID 10指定一个chunk大小,在创建阵列的命令中添加–chunk=desiredchunksize。
不幸的是,并没有设置一个大小就能适合全局的策略来提高性能,但可以参考下面的一些方案。
文件系统:就整体而言,XFS据说是最好的,当然EXT4也是不错的选择。
最佳布局:远端布局能提高读性能,但会降低写性能。
副本数目:更多的副本能最小化I/O影响,但更多的磁盘需要更大的花费。
硬件:在相同的环境下,SSD比传统(机械旋转)磁盘更能带来出性能提升
使用DD进行RAID性能测试
下面的基准测试用于检测RAID 10阵列(/dev/md0)的性能。
1. 写操作
往磁盘中写入大小为256MB的单个文件:
# dd if=/dev/zero of=/dev/md0 bs=256M count=1 oflag=dsync
写入1000次512字节:
# dd if=/dev/zero of=/dev/md0 bs=512 count=1000 oflag=dsync
使用dsync标记,dd可以绕过文件系统缓存,在RAID阵列上执行同步写。这个选项用于减少RAID性能测试中缓存的影响。
2. 读操作
从阵列中拷贝256KiB*15000(3.9 GB)大小内容到/dev/null:
# dd if=/dev/md0 of=/dev/null bs=256K count=15000
使用Iozone进行RAID性能测试
Iozone是一款文件系统基准测试工具,用来测试各种磁盘I/O操作,包括随机读写、顺序读写和重读重写。它支持将结果导出为微软的Excel或LibreOffice的Calc文件。
在CentOS/RHEL 7上安装Iozone
先保证Repoforge可用,然后输入:
# yum install iozone
在Debian 7上安装Iozone
# aptitude install iozone3
下面的iozone命令会在RAID-10阵列中执行所有测试:
# iozone -Ra /dev/md0 -b /tmp/md0.xls
-R:往标准输出生成兼容Excel的报告
-a:以全自动模式运行所有的测试,并测试各种记录/文件大小。记录大小范围:4K-16M,文件大小范围:64K-512M。
-b /tmp/md0.xls: 把测试结果存储到一个指定的文件中
感谢你的阅读,相信你对“如何在Linux上构建RAID10阵列”这一问题有一定的了解,快去动手实践吧,如果想了解更多相关知识点,可以关注编程网网站!小编会继续为大家带来更好的文章!