文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

时间序列预测中的数据滑窗操作实例(python实现)

2024-04-02 19:55

关注

撰写背景

面向数据分析的小白,水平有限,错误难免,欢迎指正。

什么是数据滑窗

进行机器学习时,一般都要涉及到划分训练集和测试集的步骤。特别地,在做数据预测时,一般把预测的依据(也就是历史数据)称作X,把需要预测的数据称为y。即首先把原始数据划分为train_X, train_y这两个训练数据集和test_X, test_y这两个测试数据集。

对于时间序列数据的预测,往往是建立由好几个历史数据预测下一时刻的未来数据,这时候为了充分利用全部数据,应该对原始数据集进行滑窗操作,如下图所示。

请添加图片描述

这里展示的是多个特征的时间序列,其中每一行数据均属于同一时刻。假设,我们要以H( humidity)、PT(pressure)、PE(power)三个特征为预测依据,取当前和上三个时刻共四个时刻的已知数据对下一时刻的PE(功率)进行预测,那么对于X数据集的滑窗就应该如上图所示,而对y数据集的滑窗应该如下图所示。

请添加图片描述

下面给出滑窗实例。

代码实现

滑窗函数

def sliding_window(DataSet, X_width, y_width, gap = 1, multi_vector = None, X_data = True):
    '''
    DataSet has to be as a DataFrame
    '''
    if X_data:
        if multi_vector:
            a,b = DataSet.shape
        else:
            a = DataSet.shape[0]
            b = 1
        c = (a-X_width-y_width-a%gap)/gap
        X = np.reshape(DataSet.iloc[0:X_width,:].values,(1,X_width,b))
        for i in range(len(DataSet) - X_width - y_width):
            i += 1
            if i > c:
                break
            j = i * gap
            tmp = DataSet.iloc[j:j + X_width,:].values
            tmp = np.reshape(tmp,(1,X_width,b))
            X = np.concatenate([X,tmp],0)
        return X
    else:
        if multi_vector:
            print('y_data-error:expect 1D ,given %dD'%DataSet.shape[1])
            return;
        else:
            a = DataSet.shape[0]
        c = (a-X_width-y_width-a%gap)/gap
        y = np.reshape(DataSet.iloc[X_width:X_width + y_width,0].values,(1,y_width))
        for i in range(len(DataSet) - X_width - y_width):
            i += 1
            if i > c:
                break
            j = i * gap + X_width
            tmp = DataSet.iloc[j:j + y_width,:].values
            tmp = np.reshape(tmp,(1,y_width))
            y = np.concatenate([y,tmp])
        return y

单特征时间序列

单特征时间序列是指仅有一个特征的一维时间序列,如股票收盘价、风电场风速数据、日营业额等。对单特征时间序列滑窗操作如下:

#DataSet训练数据集
#X_width使用的历史数据长度
#y_width要预测的数据长度
#X_data是否是X数据集
train_X = sliding_window(DataSet, X_width, y_width)
train_y = sliding_window(DataSet, X_width, y_width, X_data = None)

假设训练数据集是一个100*1的序列,使用24个数据预测未来的1个数据,那么滑窗操作就将原数据做了这样的变换:

多特征时间序列

多特征时间序列指时间序列的特征不止一个,如上文所举的H、PT、PE三特征序列。这种数据一般使用在待预测的数据跟多个特征相关性较高的场合中,如气象数据嵌入的风速预测、股市数据嵌入的收盘价格预测等。进行多特征时间序列滑窗操作如下:

#DataSet训练数据集
#X_width使用的历史数据长度
#y_width要预测的数据长度
#multi_vector是否为多特征
#X_data是否是X数据集
train_X = sliding_window(DataSet, X_width, y_width, multi_vector = True)
test_y = sliding_window(DataSet, X_width, y_width, multi_vector = True, X_data = None)

假设训练数据集是一个100*3的序列,使用24个数据预测未来的1个数据,那么滑窗操作就将原数据做了这样的变换:

注意事项

DataSet必须是DataFrame格式。

y数据集只能是一维。

总结

到此这篇关于时间序列预测中的数据滑窗操作(python实现)的文章就介绍到这了,更多相关python数据滑窗操作内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯