文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

功能强大的TraceId 搭配 ELK使用详解

2024-04-02 19:55

关注

引言

之前写了一篇关于 TraceId 的文章:为全局请求添加 TraceId ,看日志再也不懵逼

今天就接着 TraceId 做一些优化,如果想快速的定位到问题,就要实现对日志的快速搜索,所以本文就引入 ELK 技术栈。

ELK 是 ES、Logstash、Kibana 的总称,其核心功能就是实现数据的收集、搜索、可视化。具体功能和使用在本文都会提到。

需求分析

先分析一下,我们想实现的核心功能是搜索,必然是用 ES 实现,那问题就转换成如何将日志收集并存储到 ES

日志大家都不陌生了,可以在控制台打印,也可以存入文件,那能不能直接输入 ES 呢,好像没听说过。

这里就要用到 Logstash 来收集日志,Spring 默认的日志框架 Logback 已经对其提供了支持,我们要做的只是编写配置文件。

Logstash 有个问题就是非常占用内存,所以本文后面会介绍另一个比较轻量级的日志收集工具 FileBeat ,由 Go 语言编写。

同时对于真实的线上环境为了保证吞吐量和可靠性,都会引入 Kafka 进行解耦,本文不做演示。

下面就进入实战部分,搭建一套日志收集与搜索系统。

ES

推荐大家去 elastic 的中文社区下载 ELK ,速度会比较快,官网当然也是可以的。目前最新版本是8.+,推荐还是下 7.+ 比较稳妥,具体版本随意,但 ELK 的版本要一致。

本文使用 7.14.2 版本。下载下来解压就行,不废话。

修改配置文件

进入 config 目录:

# elasticsearch.yml
path.data: /Users/li/programs/elasticsearch-7.14.2/data
path.logs: /Users/li/programs/elasticsearch-7.14.2/logs
ingest.geoip.downloader.enabled: false
# jvm.options
# 如果内存够用也可以不修改
-Xms1g
-Xmx1g

启动

./bin/elasticsearch
[2022-09-13T10:54:10,015][INFO ][o.e.n.Node               ] [LdeMacBook-Pro.mshome.net] started
[2022-09-13T10:54:10,730][INFO ][o.e.l.LicenseService     ] [LdeMacBook-Pro.mshome.net] license [b7a596e6-1b61-4e6d-af2f-7eab70fe693b] mode [basic] - valid

测试

浏览器访问:http://localhost:9200/

kibana

下面再安装 ES 的可视化工具,下载地址同上,版本号同上。

修改配置文件

# kibana.yml
server.port: 5601
server.host: "localhost"
elasticsearch.hosts: ["http://localhost:9200"]
kibana.index: ".kibana"
i18n.locale: "zh-CN" # 中文

启动

./bin/kibana
[10:56:42.001] [info][status] Kibana is now degraded
[10:56:44.784] [info][status] Kibana is now available (was degraded)

测试

浏览器访问:http://localhost:5601/

新增数据并查询

PUT /ecommerce/product/1
 {
     "name" : "gaolujie yagao",
     "desc" :  "gaoxiao meibai",
     "price" :  30,
     "producer" :  "gaolujie producer",
     "tags": [ "meibai", "fangzhu" ]
 }
GET /ecommerce/product/1

Logstash

下载地址同上,版本号同上。

拷贝配置文件 logstash-sample.conf

# logstash-log-boot.conf
input {
  tcp {
    mode => "server"
    host => "127.0.0.1"
    # 通过监听9001端口进行采集日志
    port => 9001
    codec => json_lines
  }
}
output {
  elasticsearch {
    # ES的地址
    hosts => ["http://127.0.0.1:9200"]
    # 索引的名称
    index => "boot-log-collection-%{+YYYY.MM.dd}"
  }
  stdout {
    codec => rubydebug
  }
}

启动

./bin/logstash -f ./config/logstash-log-boot.conf

Logback

OK,到此 ELK 就搭建完了,接下来就是配置 boot 应用的日志输出。logback.xml

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <property name="LOG_PATTERN"
              value="%d{yyyy-MM-dd} %d{HH:mm:ss.SSS} [%highlight(%-5level)] [%boldYellow(%X{traceId})] [%boldYellow(%thread)] %boldGreen(%logger{36} %F.%L) %msg%n">
    </property>
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder>
            <pattern>${LOG_PATTERN}</pattern>
        </encoder>
        <!-- 控制台打印INFO及以上级别的日志 -->
        <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
            <level>INFO</level>
        </filter>
    </appender>
    <!--    LOGSTASH 日志收集-->
    <appender name="LOGSTASH" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <!-- 在logstash启动文件logstash-log-boot.conf中配置的IP地址和端口 -->
        <destination>127.0.0.1:9001</destination>
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder" />
        <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
            <level>INFO</level>
        </filter>
    </appender>
    <root>
        <appender-ref ref="STDOUT"/>
        <!-- 引入LOGSTASH-->
        <appender-ref ref="LOGSTASH" />
    </root>
</configuration>

如果报LogstashTcpSocketAppender这个类找不到,需要添加一个依赖:

	<dependency>
            <groupId>net.logstash.logback</groupId>
            <artifactId>logstash-logback-encoder</artifactId>
            <version>6.6</version>
        </dependency>

其实这个依赖就是用来网络通信的,来传输日志。

测试

这时启动应用,观看 Logstash 的控制台,会跟着打印日志,再打开 ES ,创建我们配置好的查询索引,神奇的事情发生了,日志一条一条的展示出来。

再结合 TraceId 进行搜索,简直逆天!

Filebeat

同样是下载 FileBeat 。

修改配置文件

filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /Users/li/IdeaProjects/cloud-alibaba/cloud-service-commerce/commerce-user/log/*.log
filebeat.config.modules:
  path: ${path.config}/modules.d/*.yml
  reload.enabled: false
setup.template.settings:
  index.number_of_shards: 2
setup.kibana:
  host: "localhost:5601"
output.elasticsearch:
  hosts: ["localhost:9200"]
processors:
  - add_host_metadata: ~
  - add_cloud_metadata: ~

因为 Filebeat 是基于监控日志文件有没有新增来同步数据的,所以需要配置日志文件的目录。

可以直接输出到 ES ,也可以输出到 Logstash 。二选一!

再配置 logback.xml

<appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
        <!--日志文件输出位置-->
        <File>/Users/li/IdeaProjects/cloud-alibaba/cloud-service-commerce/commerce-user/log/user.log</File>
        <encoder>
            <!--[%X{requestId}] 线程id,方便排查日志-->
            <pattern>%date %level [%thread] [%X{requestId}] [%logger{36}.%method\(\):%line] %msg%n</pattern>
        </encoder>
        <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
            <level>INFO</level>
        </filter>
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <!-- 添加.gz 历史日志会启用压缩 大大缩小日志文件所占空间 -->
            <!--<fileNamePattern>/home/log/stdout.log.%d{yyyy-MM-dd}.log</fileNamePattern>-->
            <fileNamePattern>
                /Users/li/IdeaProjects/cloud-alibaba/cloud-service-commerce/commerce-user/log/user-%d{yyyy-MM-dd}.log
            </fileNamePattern>
            <maxHistory>3</maxHistory><!-- 保留 3 天日志 -->
        </rollingPolicy>
    </appender>
		<root>
        <appender-ref ref="FILE"/>
    </root>

再次启动项目,发现日志已写入文件

进入 ES 查询,同样查询到日志。

经过测试,FileBeat 的日志收集延迟时间要比 Logstash 长,毕竟基于文件进行同步,可以理解,而且本身业务实时性要求不高。

最后

内容看着比较多,实际很容易实现,但真正生产环境要复杂的多,还需不断思考。

以上就是功能强大的TraceId 搭配 ELK使用详解的详细内容,更多关于TraceId 搭配 ELK的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯