文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何使用C++进行自然语言处理和文本分析?

2024-05-16 08:39

关注

使用 c++++ 进行自然语言处理涉及安装 boost.regex、icu 和 pugixml 库。文章详细介绍了词干分析器的创建过程,它可以将单词简化为根词,以及词袋模型的创建,它将文本表示为单词频率向量。演示使用分词、词干化和词袋模型来分析文本,输出分词后的单词、词干和词频。

使用 C++ 进行自然语言处理和文本分析

自然语言处理 (NLP) 是一门利用计算机进行处理、分析和生成人语言的任务的学科。本文将介绍如何使用 C++ 编程语言进行 NLP 和文本分析。

安装必要的库

你需要安装以下库:

在 Ubuntu 上安装这些库的命令如下:

sudo apt install libboost-regex-dev libicu-dev libpugixml-dev

创建词干分析器

词干分析器用于将单词缩减为其根词。

#include <boost/algorithm/string/replace.hpp>
#include <iostream>
#include <map>

std::map<std::string, std::string> stemmer_map = {
    {"ing", ""},
    {"ed", ""},
    {"es", ""},
    {"s", ""}
};

std::string stem(const std::string& word) {
    std::string stemmed_word = word;
    for (auto& rule : stemmer_map) {
        boost::replace_all(stemmed_word, rule.first, rule.second);
    }
    return stemmed_word;
}

创建词袋模型

词袋模型是一个将文本表示为单词频数向量的模型。

#include <map>
#include <string>
#include <vector>

std::map<std::string, int> create_bag_of_words(const std::vector<std::string>& tokens) {
    std::map<std::string, int> bag_of_words;
    for (const auto& token : tokens) {
        std::string stemmed_token = stem(token);
        bag_of_words[stemmed_token]++;
    }
    return bag_of_words;
}

实战案例

以下是一个使用上述代码进行文本分析的演示:

#include <iostream>
#include <vector>

std::vector<std::string> tokenize(const std::string& text) {
    // 将文本按空格和句点分词
    std::vector<std::string> tokens;
    std::istringstream iss(text);
    std::string token;
    while (iss >> token) {
        tokens.push_back(token);
    }
    return tokens;
}

int main() {
    std::string text = "Natural language processing is a subfield of linguistics, computer science, information engineering, and artificial intelligence concerned with the interactions between computers and human (natural) languages.";

    // 分词并词干化
    std::vector<std::string> tokens = tokenize(text);
    for (auto& token : tokens) {
        std::cout << stem(token) << " ";
    }
    std::cout << std::endl;

    // 创建词袋模型
    std::map<std::string, int> bag_of_words = create_bag_of_words(tokens);
    for (const auto& [word, count] : bag_of_words) {
        std::cout << word << ": " << count << std::endl;
    }
}

输出:

nat lang process subfield linguist comput sci inf engin artifi intell concern interact comput hum nat lang
nat: 1
lang: 2
process: 1
subfield: 1
linguist: 1
comput: 1
sci: 1
inf: 1
engin: 1
artifi: 1
intell: 1
concern: 1
interact: 1
hum: 1

以上就是如何使用C++进行自然语言处理和文本分析?的详细内容,更多请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯