一、OpenCV标定的几个常用函数
findChessboardCorners() 棋盘格角点检测
bool findChessboardCorners( InputArray image,
Size patternSize,
OutputArray corners,
int flags = CALIB_CB_ADAPTIVE_THRESH +
CALIB_CB_NORMALIZE_IMAGE );
第一个参数是输入的棋盘格图像(可以是8位单通道或三通道图像);
第二个参数是棋盘格内部的角点的行列数(注意:不是棋盘格的行列数,如棋盘格的行列数分别为4、8,而内部角点的行列数分别是3、7,因此这里应该指定为cv::Size(3, 7));
第三个参数是检测到的棋盘格角点,类型为std::vectorcv::Point2f。
第四个参数flag,用于指定在检测棋盘格角点的过程中所应用的一种或多种过滤方法,可以使用下面的一种或多种,如果都是用则使用OR:
- cv::CALIB_CB_ADAPTIVE_THRESH:使用自适应阈值将图像转化成二值图像
- cv::CALIB_CB_NORMALIZE_IMAGE:归一化图像灰度系数(用直方图均衡化或者自适应阈值)
- cv::CALIB_CB_FILTER_QUADS:在轮廓提取阶段,使用附加条件排除错误的假设
- cv::CALIB_CV_FAST_CHECK:快速检测
cv::drawChessboardCorners() 棋盘格角点的绘制
drawChessboardCorners( InputOutputArray image,
Size patternSize,
InputArray corners,
bool patternWasFound );
- image为8-bit,三通道图像
- patternSize,每一行每一列的角
- corners,已经检测到的角
- patternWasFound,findChessboardCorners的返回值
find4QuadCornerSubpix() 对粗提取的角点进行精确化
find4QuadCornerSubpix( InputArray img,
InputOutputArray corners,
Size region_size );
- image源图像
- corners,提供角点的初始坐标
- region_size: 搜索窗口的一般尺寸
cornerSubPix() 亚像素检测
void cornerSubPix( InputArray image,
InputOutputArray corners,
Size winSize,
Size zeroZone,
TermCriteria criteria );
- image源图像
- corners,提供角点的初始坐标,返回更加精确的点
- winSize,搜索窗口的一般尺寸,如果winSize=Size(5,5),则search windows为11*11
- winSize,死区的一般尺寸,用来避免自相关矩阵的奇点,(-1,-1)表示没有死区
- criteria,控制迭代次数和精度
calibrateCamera() 求解摄像机的内在参数和外在参数
double calibrateCamera( InputArrayOfArrays objectPoints,
InputArrayOfArrays imagePoints,
Size imageSize,
InputOutputArray cameraMatrix,
InputOutputArray distCoeffs,
OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
int flags = 0,
TermCriteria criteria = TermCriteria(TermCriteria::COUNT +
TermCriteria::EPS, 30, DBL_EPSILON) );
objectPoints,世界坐标,用vector<vector>,输入x,y坐标,z坐标为0
imagePoints,图像坐标,vector<vector>
imageSize,图像的大小用于初始化标定摄像机的image的size
cameraMatrix,内参数矩阵
distCoeffs,畸变矩阵
rvecs,位移向量
tvecs,旋转向量
flags,可以组合:
CV_CALIB_USE_INTRINSIC_GUESS:使用该参数时,将包含有效的fx,fy,cx,cy的估计值的内参矩阵cameraMatrix,作为初始值输入,然后函数对其做进一步优化。如果不使用这个参数,用图像的中心点初始化光轴点坐标(cx, cy),使用最小二乘估算出fx,fy(这种求法好像和张正友的论文不一样,不知道为何要这样处理)。注意,如果已知内部参数(内参矩阵和畸变系数),就不需要使用这个函数来估计外参,可以使用solvepnp()函数计算外参数矩阵。
CV_CALIB_FIX_PRINCIPAL_POINT:在进行优化时会固定光轴点,光轴点将保持为图像的中心点。当CV_CALIB_USE_INTRINSIC_GUESS参数被设置,保持为输入的值。
CV_CALIB_FIX_ASPECT_RATIO:固定fx/fy的比值,只将fy作为可变量,进行优化计算。当
CV_CALIB_USE_INTRINSIC_GUESS没有被设置,fx和fy的实际输入值将会被忽略,只有fx/fy的比值被计算和使用。
CV_CALIB_ZERO_TANGENT_DIST:切向畸变系数(P1,P2)被设置为零并保持为零。
CV_CALIB_FIX_K1,…,CV_CALIB_FIX_K6:对应的径向畸变系数在优化中保持不变。如果设置了CV_CALIB_USE_INTRINSIC_GUESS参数,就从提供的畸变系数矩阵中得到。否则,设置为0。
CV_CALIB_RATIONAL_MODEL(理想模型):启用畸变k4,k5,k6三个畸变参数。使标定函数使用有理模型,返回8个系数。如果没有设置,则只计算其它5个畸变参数。
CALIB_THIN_PRISM_MODEL (薄棱镜畸变模型):启用畸变系数S1、S2、S3和S4。使标定函数使用薄棱柱模型并返回12个系数。如果不设置标志,则函数计算并返回只有5个失真系数。
CALIB_FIX_S1_S2_S3_S4 :优化过程中不改变薄棱镜畸变系数S1、S2、S3、S4。如果cv_calib_use_intrinsic_guess设置,使用提供的畸变系数矩阵中的值。否则,设置为0。
CALIB_TILTED_MODEL (倾斜模型):启用畸变系数tauX and tauY。标定函数使用倾斜传感器模型并返回14个系数。如果不设置标志,则函数计算并返回只有5个失真系数。
CALIB_FIX_TAUX_TAUY :在优化过程中,倾斜传感器模型的系数不被改变。如果cv_calib_use_intrinsic_guess设置,从提供的畸变系数矩阵中得到。否则,设置为0。
initUndistortRectifyMap() 计算畸变参数
void initUndistortRectifyMap(InputArray cameraMatrix,
InputArray distCoeffs,
InputArray R,
InputArray newCameraMatrix,
Size size,
int m1type,
OutputArray map1,
OutputArray map2)
- cameraMatrix,摄像机内参数矩阵
- distCoeffs, 摄像机的5个畸变系数,(k1,k2,p1,p2[,k3[,k4,k5,k6]])
- R,在客观空间中的转换对象
- newCameraMatrix,新的3*3的浮点型矩矩阵
- size,为失真图像的大小
- m1type,第一个输出的map,类型为CV_32FC1或CV_16SC2
- map1,x映射函数
- map2,y映射函数
二、绘制棋盘格,拍摄照片
这里自己画一个棋盘格用作标定,长度为1280像素,宽490像素,横向10方格,纵向7方格
std_cb = Vision::makeCheckerboard(1280, 490, 10, 7, 0,
(char *)"../blizzard/res/calibration/std_cb.png");
效果如图
Vision是我个人创建的视觉类,可以用来绘制标准的棋盘格。
头文件vision.h
//
// Created by czh on 18-10-16.
//
#ifndef OPENGL_PRO_VISION_H
#define OPENGL_PRO_VISION_H
#include "opencv2/opencv.hpp"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgcodecs/imgcodecs.hpp>
#include "iostream"
class Vision {
public:
static cv::Mat read(std::string file_path, int flags = cv::IMREAD_ANYCOLOR | cv::IMREAD_ANYDEPTH);
static cv::Mat write(std::string file_path, int flags = cv::IMREAD_ANYCOLOR | cv::IMREAD_ANYDEPTH);
static void dispConfig(cv::Mat img);
static cv::Mat makeCheckerboard(int bkgWidth, int bkgHeight, int sqXnum, int sqYnum = 0, int borderThickness = 0, char *savePath = NULL);
private:
};
#endif //OPENGL_PRO_VISION_H
源文件vision.cpp
//
// Created by czh on 18-10-16.
//
#include "vision.h"
#include "string.h"
using namespace std;
using namespace cv;
const char *findName(const char *ch) {
const char *name = strrchr(ch, '/');
return ++name;
}
cv::Mat Vision::read(std::string file_path, int flags) {
printf("#Vision read\n");
cv::Mat img;
img = cv::imread(file_path, flags);
if (img.data == NULL) {
printf("\tError:vision read\n");
} else {
dispConfig(img);
}
return img;
}
void Vision::dispConfig(cv::Mat img) {
printf("\tpixel:%d*%d, channels:%d\n", img.size().width, img.size().height, img.channels());
}
cv::Mat Vision::makeCheckerboard(int bkgWidth, int bkgHeight, int sqXnum, int sqYnum, int thickNum, char *savePath) {
if(sqYnum == 0){
sqYnum = sqXnum;
}
if(savePath == NULL){
char *defaultPath = (char *)"../res/calibration/maths.png";
savePath = defaultPath;
}
int checkboardX = 0;//棋盘x坐标
int checkboardY = 0;//棋盘y坐标
int xLen = bkgWidth / sqXnum;//x方格长度
int yLen = bkgHeight / sqYnum;//y方格长度
cv::Mat img(bkgHeight + thickNum * 2, bkgWidth + thickNum * 2, CV_8UC4, cv::Scalar(0, 255, 255, 255));
for (int i = 0; i < img.rows; i++) {
for (int j = 0; j < img.cols; j++) {
if (i < thickNum || i >= thickNum + bkgHeight || j < thickNum || j >= thickNum + bkgWidth) {
img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(0, 0, 0, 255);
continue;
}
checkboardX = j - thickNum;
checkboardY = i - thickNum;
if (checkboardY / yLen % 2 == 0) {
if ((checkboardX) / xLen % 2 == 0) {
img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(255, 255, 255, 255);
} else {
img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(0, 0, 0, 255);
}
}
else{
if ((checkboardX) / xLen % 2 != 0) {
img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(255, 255, 255, 255);
} else {
img.at<Vec<uchar, 4>>(i, j) = cv::Scalar(0, 0, 0, 255);
}
}
}
}
imwrite(savePath, img); //保存生成的图片
printf("#makeCheckerboard %d*%d\n", bkgWidth + thickNum, bkgHeight + thickNum);
return img;
}
用A4纸打印棋盘格,相机拍摄照片。
我偷懒,拿了别人的标定照片
三、相机标定
下面是相机标定代码
cv::imwrite("../blizzard/res/calibration/cb_source.png", cb_source);
printf("#Start scan corner\n");
cv::Mat img;
std::vector<cv::Point2f> image_points;
std::vector<std::vector<cv::Point2f>> image_points_seq;
if (cv::findChessboardCorners(cb_source, cv::Size(aqXnum, aqYnum), image_points, 0) == 0) {
printf("#Error: Corners not find ");
return 0;
} else {
cvtColor(cb_source, img, CV_RGBA2GRAY);
cv::imwrite("../blizzard/res/calibration/cb_gray.png", img);
//find4QuadCornerSubpix(img, image_points, cv::Size(5, 5));
cv::cornerSubPix(img, image_points, cv::Size(11, 11), cv::Size(-1, -1),
cv::TermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 30, 0.01));
image_points_seq.push_back(image_points);
cv::Mat cb_corner;
cb_corner = cb_source.clone();
drawChessboardCorners(cb_corner, cv::Size(aqXnum, aqYnum), image_points, true);
cv::imwrite("../blizzard/res/calibration/cb_corner.png", cb_corner);
}
printf("#Start calibrate\n");
cv::Size square_size = cv::Size(14.2222, 12);
std::vector<std::vector<cv::Point3f>> object_points;
cv::Mat cameraMatrix = cv::Mat(3, 3, CV_32FC1, cv::Scalar::all(0));
cv::Mat distCoeffs = cv::Mat(1, 5, CV_32FC1, cv::Scalar::all(0));
std::vector<cv::Mat> tvecsMat;
std::vector<cv::Mat> rvecsMat;
std::vector<cv::Point3f> realPoint;
for (int i = 0; i < aqYnum; i++) {
for (int j = 0; j < aqXnum; j++) {
cv::Point3f tempPoint;
tempPoint.x = i * square_size.width;
tempPoint.y = j * square_size.height;
tempPoint.z = 0;
realPoint.push_back(tempPoint);
}
}
object_points.push_back(realPoint);
printf("#objectPoints: %ld\n", sizeof(object_points[0]));
std::cout << object_points[0] << std::endl;
printf("#image_points: %ld\n", sizeof(image_points_seq[0]));
std::cout << image_points << std::endl;
printf("#image size\n");
std::cout << SCREEN_WIDTH << "*" << SCREEN_HEIGHT << std::endl;
cv::calibrateCamera(object_points, image_points_seq, cb_source.size(), cameraMatrix, distCoeffs, rvecsMat, tvecsMat,
CV_CALIB_FIX_K3);
std::cout << "tvecsMat:\n" << tvecsMat[0] << std::endl;
std::cout << "rvecsMat:\n" << rvecsMat[0] << std::endl;
std::cout << "#cameraMatrix:\n" << cameraMatrix << std::endl;
std::cout << "#distCoeffs:\n" << distCoeffs << std::endl;
四、对图片进行校正
cv::Mat cb_final;
cv::Mat mapx = cv::Mat(cb_source.size(), CV_32FC1);
cv::Mat mapy = cv::Mat(cb_source.size(), CV_32FC1);
cv::Mat R = cv::Mat::eye(3, 3, CV_32F);
//initUndistortRectifyMap(cameraMatrix, distCoeffs, R, cv::Mat(), cb_source.size(), CV_32FC1,
// mapx, mapy);
//cv::remap(cb_source, cb_final, mapx, mapy, cv::INTER_LINEAR);
undistort(cb_source, cb_final, cameraMatrix, distCoeffs);
cv::imwrite("../blizzard/res/calibration/cb_final.png", cb_final);
1.校正前的图片
2.校正后的图片
总结
到此这篇关于OpenCV相机标定的文章就介绍到这了,更多相关OpenCV相机标定内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!