文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python特效之数字成像方法详解

2024-04-02 19:55

关注

一、特效预览

处理前

处理后

细节放大后

二、程序原理

1.将图片转为灰白图片后,将图片分成了三块,明、暗、阴影区域

2.明区域使用空白进行填充

3.阴影区域使用横线进行填充

4.暗区域使用数字进行填充,通过对暗区域的像素进行分类,不同像素使用不同数字进行填充即可

三、程序源码

#!/usr/bin/env python
# encoding: utf-8
import cv2
import random
import numpy as np
 
class digitalPicture:
    '''
     This is a main Class, the file contains all documents.
     One document contains paragraphs that have several sentences
     It loads the original file and converts the original file to new content
     Then the new content will be saved by this class
    '''
    def __init__(self):
        self.picture = 'assets/aaa.jpeg'
 
    def hello(self):
        '''
        This is a welcome speech
        :return: self
        '''
        print('*' * 50)
        print(' ' * 20 + '数字成像')
        print(' ' * 5 + 'Author: autofelix  Date: 2022-01-06 13:14')
        print('*' * 50)
        return self
 
    def run(self):
        '''
        The program entry
        '''
        img = cv2.imread(self.picture)
        str_img = self.img_to_string(img)
        cv2.imwrite('result.jpg', str_img)
        print('处理完成!!!!')
 
    def img_to_string(self, frame, K=6):
        """
        利用 聚类 将像素信息聚为3或5类,颜色最深的一类用数字密集地表示,阴影的一类用“-”横杠表示,明亮部分空白表示。
        ---------------------------------
        frame:需要传入的图片信息。可以是opencv的cv2.imread()得到的数组,也可以是Pillow的Image.read()。
        K:聚类数量,推荐的K为3或5。根据经验,3或5时可以较为优秀地处理很多图像了。若默认的K=5无法很好地表现原图,请修改为3进行尝试。若依然无法很好地表现原图,请换图尝试。 ( -_-|| )
        ---------------------------------
        聚类数目理论可以取大于等于3的任意整数。但水平有限,无法自动判断当生成的字符画可以更好地表现原图细节时,“黑暗”、“阴影”、”明亮“之间边界在哪。所以说由于无法有效利用更大的聚类数量,那么便先简单地限制聚类数目为3和5。
        """
        if type(frame) != np.ndarray:
            frame = np.array(frame)
 
        height, width, *_ = frame.shape  # 有时返回两个值,有时三个值
        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        frame_array = np.float32(frame_gray.reshape(-1))
 
        # 设置相关参数。
        criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
        flags = cv2.KMEANS_RANDOM_CENTERS
        # 得到labels(类别)、centroids(矩心)。
        # 如第一行6个像素labels=[0,2,2,1,2,0],则意味着6个像素分别对应着 第1个矩心、第3个矩心、第3、2、3、1个矩心。
        compactness, labels, centroids = cv2.kmeans(frame_array, K, None, criteria, 10, flags)
        centroids = np.uint8(centroids)
 
        # labels的数个矩心以随机顺序排列,所以需要简单处理矩心.
        centroids = centroids.flatten()
        centroids_sorted = sorted(centroids)
        # 获得不同centroids的明暗程度,0最暗
        centroids_index = np.array([centroids_sorted.index(value) for value in centroids])
 
        bright = [abs((3 * i - 2 * K) / (3 * K)) for i in range(1, 1 + K)]
        bright_bound = bright.index(np.min(bright))
        shadow = [abs((3 * i - K) / (3 * K)) for i in range(1, 1 + K)]
        shadow_bound = shadow.index(np.min(shadow))
 
        labels = labels.flatten()
        # 将labels转变为实际的明暗程度列表,0最暗。
        labels = centroids_index[labels]
        # 列表解析,每2*2个像素挑选出一个,组成(height*width*灰)数组。
        labels_picked = [labels[rows * width:(rows + 1) * width:2] for rows in range(0, height, 2)]
 
        canvas = np.zeros((3 * height, 3 * width, 3), np.uint8)
        canvas.fill(255)  # 创建长宽为原图三倍的白色画布。
 
        # 因为 字体大小为0.45时,每个数字占6*6个像素,而白底画布为原图三倍
        # 所以 需要原图中每2*2个像素中挑取一个,在白底画布中由6*6像素大小的数字表示这个像素信息。
        y = 8
        for rows in labels_picked:
            x = 0
            for cols in rows:
                if cols <= shadow_bound:
                    cv2.putText(canvas, str(random.randint(2, 9)),
                                (x, y), cv2.FONT_HERSHEY_PLAIN, 0.45, 1)
                elif cols <= bright_bound:
                    cv2.putText(canvas, "-", (x, y),
                                cv2.FONT_HERSHEY_PLAIN, 0.4, 0, 1)
                x += 6
            y += 6
 
        return canvas
 
if __name__ == '__main__':
    digitalPicture().hello().run()

以上就是Python特效之数字成像方法详解的详细内容,更多关于Python数字成像的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯