文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

NumPy与Python内置列表计算标准差区别是什么

2023-07-02 17:21

关注

本篇内容介绍了“NumPy与Python内置列表计算标准差区别是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

1 什么是 Numpy

NumPy,是 Numerical Python 的简称,用于高性能科学计算和数据分析的基础包,像数学科学工具(pandas)和框架(Scikit-learn)中都使用到了 NumPy 这个包。

NumPy 中的基本数据结构是ndarray或者 N 维数值数组,在形式上来说,它的结构有点像 Python 的基础类型——Python列表。

但本质上,这两者并不同,可以看到一个简单的对比。

我们创建两个列表,当我们创建好了之后,可以使用 +运算符进行连接:

list1 = [i for i in range(1,11)]list2 = [i**2 for i in range(1,11)]print(list1+list2)# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

列表中元素的处理感觉像对象,不是很数字,不是吗? 如果这些是数字向量而不是简单的数字列表,您会期望 + 运算符的行为略有不同,并将第一个列表中的数字按元素添加到第二个列表中的相应数字中。

接下来看一下 Nympy 的数组版本:

import numpy as nparr1 = np.array(list1)arr2 = np.array(list2)arr1 + arr2# array([ 2, 6, 12, 20, 30, 42, 56, 72, 90, 110])

通过 numpy 的np.array数组方法实现了两个列表内的逐个值进行相加。

我们通过dir 函数来看两者的区别,先看 Python 内置列表 list1的内置方法:

NumPy与Python内置列表计算标准差区别是什么

再用同样的方法看一下 arr1中的方法:

NumPy与Python内置列表计算标准差区别是什么

NumPy 数组对象还有更多可用的函数和属性。 特别要注意诸如meanstdsum之类的方法,因为它们清楚地表明重点关注使用这种数组对象的数值/统计计算。 而且这些操作也很快。

2 NumPy 数组和 Python 内置计算对比

NumPy 的速度要快得多,因为它的矢量化实现以及它的许多核心例程最初是用 C 语言(基于 CPython 框架)编写的。 NumPy 数组是同构类型的密集排列的数组。 相比之下,Python 列表是指向对象的指针数组,即使它们都属于同一类型。 因此,我们得到了参考局部性的好处。

许多 NumPy 操作是用 C 语言实现的,避免了 Python 中的循环、指针间接和逐元素动态类型检查的一般成本。 特别是,速度的提升取决于您正在执行的操作。 对于数据科学和 ML 任务,这是一个无价的优势,因为它避免了长和多维数组中的循环。

让我们使用 @timing计时装饰器来说明这一点。 这是一个围绕两个函数 std_devstd_dev_python包装装饰器的代码,分别使用 NumPy 和本机 Python 代码实现列表/数组的标准差计算。

3 函数计算时间装饰器

我们可以使用 Python 装饰器和functools模块的wrapping来写一个 时间装饰器timing:

def timing(func):@wraps(func)def wrap(*args, **kw):begin_time = time()result = func(*args, **kw)end_time = time()print(f"Function '{func.__name__}' took {end_time-begin_time} seconds to run")return resultreturn wrap

4 标准差计算公式

然后利用这个时间装饰器来看 Numpy 数组和 Python 内置的列表,然后计算他们的标准差,

公式如图:

NumPy与Python内置列表计算标准差区别是什么

代码如下:

from functools import wrapsfrom time import timeimport numpy as npfrom math import sqrtdef timing(func):@wraps(func)def wrap(*args, **kw):begin_time = time()result = func(*args, **kw)end_time = time()# print(f"Function '{func.__name__}' with arguments {args},keywords {kw} took {end_time-begin_time} seconds to run")print(f"Function '{func.__name__}' took {end_time-begin_time} seconds to run")return resultreturn wrap@timingdef std_dev(a):if isinstance(a, list):a = np.array(a)s = a.std()return s@timingdef std_dev_python(lst):length = len(lst)s = sum(lst)average = s / lengthsumsq = 0for i in lst:sumsq += (i-average)**2sumsq_average = sumsq/lengthresult = sqrt(sumsq_average)return result

运行结果,最终可以看到 1000000 个值得标准差的值为 288675.13459,而 Numpy 计算时间为 0.0080 s,而 Python 原生计算方式为 0.2499 s

NumPy与Python内置列表计算标准差区别是什么

由此可见,Numpy 的方式明显更快。

“NumPy与Python内置列表计算标准差区别是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯