1. 什么是Hook
经常会听到钩子函数(hook function)这个概念,最近在看目标检测开源框架mmdetection,里面也出现大量Hook的编程方式,那到底什么是hook?hook的作用是什么?
- what is hook ?钩子hook,顾名思义,可以理解是一个挂钩,作用是有需要的时候挂一个东西上去。具体的解释是:钩子函数是把我们自己实现的hook函数在某一时刻挂接到目标挂载点上。
- hook函数的作用 举个例子,hook的概念在windows桌面软件开发很常见,特别是各种事件触发的机制; 比如C++的MFC程序中,要监听鼠标左键按下的时间,MFC提供了一个onLeftKeyDown的钩子函数。很显然,MFC框架并没有为我们实现onLeftKeyDown具体的操作,只是为我们提供一个钩子,当我们需要处理的时候,只要去重写这个函数,把我们需要操作挂载在这个钩子里,如果我们不挂载,MFC事件触发机制中执行的就是空的操作。
从上面可知
- hook函数是程序中预定义好的函数,这个函数处于原有程序流程当中(暴露一个钩子出来)
- 我们需要再在有流程中钩子定义的函数块中实现某个具体的细节,需要把我们的实现,挂接或者注册(register)到钩子里,使得hook函数对目标可用
- hook 是一种编程机制,和具体的语言没有直接的关系
- 如果从设计模式上看,hook模式是模板方法的扩展
- 钩子只有注册的时候,才会使用,所以原有程序的流程中,没有注册或挂载时,执行的是空(即没有执行任何操作)
本文用python来解释hook的实现方式,并展示在开源项目中hook的应用案例。hook函数和我们常听到另外一个名称:回调函数(callback function)功能是类似的,可以按照同种模式来理解。
2. hook实现例子
据我所知,hook函数最常使用在某种流程处理当中。这个流程往往有很多步骤。hook函数常常挂载在这些步骤中,为增加额外的一些操作,提供灵活性。
下面举一个简单的例子,这个例子的目的是实现一个通用往队列中插入内容的功能。流程步骤有2个
- 需要再插入队列前,对数据进行筛选 input_filter_fn
- 插入队列 insert_queue
- class ContentStash(object):
- """
- content stash for online operation
- pipeline is
- 1. input_filter: filter some contents, no use to user
- 2. insert_queue(redis or other broker): insert useful content to queue
- """
- def __init__(self):
- self.input_filter_fn = None
- self.broker = []
- def register_input_filter_hook(self, input_filter_fn):
- """
- register input filter function, parameter is content dict
- Args:
- input_filter_fn: input filter function
- Returns:
- """
- self.input_filter_fn = input_filter_fn
- def insert_queue(self, content):
- """
- insert content to queue
- Args:
- content: dict
- Returns:
- """
- self.broker.append(content)
- def input_pipeline(self, content, use=False):
- """
- pipeline of input for content stash
- Args:
- use: is use, defaul False
- content: dict
- Returns:
- """
- if not use:
- return
- # input filter
- if self.input_filter_fn:
- _filter = self.input_filter_fn(content)
- # insert to queue
- if not _filter:
- self.insert_queue(content)
- # test
- ## 实现一个你所需要的钩子实现:比如如果content 包含time就过滤掉,否则插入队列
- def input_filter_hook(content):
- """
- test input filter hook
- Args:
- content: dict
- Returns: None or content
- """
- if content.get('time') is None:
- return
- else:
- return content
- # 原有程序
- content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}}
- content_stash = ContentStash('audit', work_dir='')
- # 挂上钩子函数, 可以有各种不同钩子函数的实现,但是要主要函数输入输出必须保持原有程序中一致,比如这里是content
- content_stash.register_input_filter_hook(input_filter_hook)
- # 执行流程
- content_stash.input_pipeline(content)
3. hook在开源框架中的应用
3.1 keras
在深度学习训练流程中,hook函数体现的淋漓尽致。
一个训练过程(不包括数据准备),会轮询多次训练集,每次称为一个epoch,每个epoch又分为多个batch来训练。流程先后拆解成:
- 开始训练
- 训练一个epoch前
- 训练一个batch前
- 训练一个batch后
- 训练一个epoch后
- 评估验证集
- 结束训练
这些步骤是穿插在训练一个batch数据的过程中,这些可以理解成是钩子函数,我们可能需要在这些钩子函数中实现一些定制化的东西,比如在训练一个epoch后我们要保存下训练的模型,在结束训练时用最好的模型执行下测试集的效果等等。
keras中是通过各种回调函数来实现钩子hook功能的。这里放一个callback的父类,定制时只要继承这个父类,实现你过关注的钩子就可以了。
- @keras_export('keras.callbacks.Callback')
- class Callback(object):
- """Abstract base class used to build new callbacks.
- Attributes:
- params: Dict. Training parameters
- (eg. verbosity, batch size, number of epochs...).
- model: Instance of `keras.models.Model`.
- Reference of the model being trained.
- The `logs` dictionary that callback methods
- take as argument will contain keys for quantities relevant to
- the current batch or epoch (see method-specific docstrings).
- """
- def __init__(self):
- self.validation_data = None # pylint: disable=g-missing-from-attributes
- self.model = None
- # Whether this Callback should only run on the chief worker in a
- # Multi-Worker setting.
- # TODO(omalleyt): Make this attr public once solution is stable.
- self._chief_worker_only = None
- self._supports_tf_logs = False
- def set_params(self, params):
- self.params = params
- def set_model(self, model):
- self.model = model
- @doc_controls.for_subclass_implementers
- @generic_utils.default
- def on_batch_begin(self, batch, logs=None):
- """A backwards compatibility alias for `on_train_batch_begin`."""
- @doc_controls.for_subclass_implementers
- @generic_utils.default
- def on_batch_end(self, batch, logs=None):
- """A backwards compatibility alias for `on_train_batch_end`."""
- @doc_controls.for_subclass_implementers
- def on_epoch_begin(self, epoch, logs=None):
- """Called at the start of an epoch.
- Subclasses should override for any actions to run. This function should only
- be called during TRAIN mode.
- Arguments:
- epoch: Integer, index of epoch.
- logs: Dict. Currently no data is passed to this argument for this method
- but that may change in the future.
- """
- @doc_controls.for_subclass_implementers
- def on_epoch_end(self, epoch, logs=None):
- """Called at the end of an epoch.
- Subclasses should override for any actions to run. This function should only
- be called during TRAIN mode.
- Arguments:
- epoch: Integer, index of epoch.
- logs: Dict, metric results for this training epoch, and for the
- validation epoch if validation is performed. Validation result keys
- are prefixed with `val_`.
- """
- @doc_controls.for_subclass_implementers
- @generic_utils.default
- def on_train_batch_begin(self, batch, logs=None):
- """Called at the beginning of a training batch in `fit` methods.
- Subclasses should override for any actions to run.
- Arguments:
- batch: Integer, index of batch within the current epoch.
- logs: Dict, contains the return value of `model.train_step`. Typically,
- the values of the `Model`'s metrics are returned. Example:
- `{'loss': 0.2, 'accuracy': 0.7}`.
- """
- # For backwards compatibility.
- self.on_batch_begin(batch, logslogs=logs)
- @doc_controls.for_subclass_implementers
- @generic_utils.default
- def on_train_batch_end(self, batch, logs=None):
- """Called at the end of a training batch in `fit` methods.
- Subclasses should override for any actions to run.
- Arguments:
- batch: Integer, index of batch within the current epoch.
- logs: Dict. Aggregated metric results up until this batch.
- """
- # For backwards compatibility.
- self.on_batch_end(batch, logslogs=logs)
- @doc_controls.for_subclass_implementers
- @generic_utils.default
- def on_test_batch_begin(self, batch, logs=None):
- """Called at the beginning of a batch in `evaluate` methods.
- Also called at the beginning of a validation batch in the `fit`
- methods, if validation data is provided.
- Subclasses should override for any actions to run.
- Arguments:
- batch: Integer, index of batch within the current epoch.
- logs: Dict, contains the return value of `model.test_step`. Typically,
- the values of the `Model`'s metrics are returned. Example:
- `{'loss': 0.2, 'accuracy': 0.7}`.
- """
- @doc_controls.for_subclass_implementers
- @generic_utils.default
- def on_test_batch_end(self, batch, logs=None):
- """Called at the end of a batch in `evaluate` methods.
- Also called at the end of a validation batch in the `fit`
- methods, if validation data is provided.
- Subclasses should override for any actions to run.
- Arguments:
- batch: Integer, index of batch within the current epoch.
- logs: Dict. Aggregated metric results up until this batch.
- """
- @doc_controls.for_subclass_implementers
- @generic_utils.default
- def on_predict_batch_begin(self, batch, logs=None):
- """Called at the beginning of a batch in `predict` methods.
- Subclasses should override for any actions to run.
- Arguments:
- batch: Integer, index of batch within the current epoch.
- logs: Dict, contains the return value of `model.predict_step`,
- it typically returns a dict with a key 'outputs' containing
- the model's outputs.
- """
- @doc_controls.for_subclass_implementers
- @generic_utils.default
- def on_predict_batch_end(self, batch, logs=None):
- """Called at the end of a batch in `predict` methods.
- Subclasses should override for any actions to run.
- Arguments:
- batch: Integer, index of batch within the current epoch.
- logs: Dict. Aggregated metric results up until this batch.
- """
- @doc_controls.for_subclass_implementers
- def on_train_begin(self, logs=None):
- """Called at the beginning of training.
- Subclasses should override for any actions to run.
- Arguments:
- logs: Dict. Currently no data is passed to this argument for this method
- but that may change in the future.
- """
- @doc_controls.for_subclass_implementers
- def on_train_end(self, logs=None):
- """Called at the end of training.
- Subclasses should override for any actions to run.
- Arguments:
- logs: Dict. Currently the output of the last call to `on_epoch_end()`
- is passed to this argument for this method but that may change in
- the future.
- """
- @doc_controls.for_subclass_implementers
- def on_test_begin(self, logs=None):
- """Called at the beginning of evaluation or validation.
- Subclasses should override for any actions to run.
- Arguments:
- logs: Dict. Currently no data is passed to this argument for this method
- but that may change in the future.
- """
- @doc_controls.for_subclass_implementers
- def on_test_end(self, logs=None):
- """Called at the end of evaluation or validation.
- Subclasses should override for any actions to run.
- Arguments:
- logs: Dict. Currently the output of the last call to
- `on_test_batch_end()` is passed to this argument for this method
- but that may change in the future.
- """
- @doc_controls.for_subclass_implementers
- def on_predict_begin(self, logs=None):
- """Called at the beginning of prediction.
- Subclasses should override for any actions to run.
- Arguments:
- logs: Dict. Currently no data is passed to this argument for this method
- but that may change in the future.
- """
- @doc_controls.for_subclass_implementers
- def on_predict_end(self, logs=None):
- """Called at the end of prediction.
- Subclasses should override for any actions to run.
- Arguments:
- logs: Dict. Currently no data is passed to this argument for this method
- but that may change in the future.
- """
- def _implements_train_batch_hooks(self):
- """Determines if this Callback should be called for each train batch."""
- return (not generic_utils.is_default(self.on_batch_begin) or
- not generic_utils.is_default(self.on_batch_end) or
- not generic_utils.is_default(self.on_train_batch_begin) or
- not generic_utils.is_default(self.on_train_batch_end))
这些钩子的原始程序是在模型训练流程中的
keras源码位置: tensorflow\python\keras\engine\training.py
部分摘录如下(## I am hook):
- # Container that configures and calls `tf.keras.Callback`s.
- if not isinstance(callbacks, callbacks_module.CallbackList):
- callbacks = callbacks_module.CallbackList(
- callbacks,
- add_history=True,
- add_progbar=verbose != 0,
- model=self,
- verboseverbose=verbose,
- epochsepochs=epochs,
- steps=data_handler.inferred_steps)
- ## I am hook
- callbacks.on_train_begin()
- training_logs = None
- # Handle fault-tolerance for multi-worker.
- # TODO(omalleyt): Fix the ordering issues that mean this has to
- # happen after `callbacks.on_train_begin`.
- data_handler._initial_epoch = ( # pylint: disable=protected-access
- self._maybe_load_initial_epoch_from_ckpt(initial_epoch))
- for epoch, iterator in data_handler.enumerate_epochs():
- self.reset_metrics()
- callbacks.on_epoch_begin(epoch)
- with data_handler.catch_stop_iteration():
- for step in data_handler.steps():
- with trace.Trace(
- 'TraceContext',
- graph_type='train',
- epochepoch_num=epoch,
- stepstep_num=step,
- batch_sizebatch_size=batch_size):
- ## I am hook
- callbacks.on_train_batch_begin(step)
- tmp_logs = train_function(iterator)
- if data_handler.should_sync:
- context.async_wait()
- logs = tmp_logs # No error, now safe to assign to logs.
- end_step = step + data_handler.step_increment
- callbacks.on_train_batch_end(end_step, logs)
- epoch_logs = copy.copy(logs)
- # Run validation.
- ## I am hook
- callbacks.on_epoch_end(epoch, epoch_logs)
3.2 mmdetection
mmdetection是一个目标检测的开源框架,集成了许多不同的目标检测深度学习算法(pytorch版),如faster-rcnn, fpn, retianet等。里面也大量使用了hook,暴露给应用实现流程中具体部分。
详见https://github.com/open-mmlab/mmdetection
这里看一个训练的调用例子(摘录)(https://github.com/open-mmlab/mmdetection/blob/5d592154cca589c5113e8aadc8798bbc73630d98/mmdet/apis/train.py)
- def train_detector(model,
- dataset,
- cfg,
- distributed=False,
- validate=False,
- timestamp=None,
- meta=None):
- logger = get_root_logger(cfg.log_level)
- # prepare data loaders
- # put model on gpus
- # build runner
- optimizer = build_optimizer(model, cfg.optimizer)
- runner = EpochBasedRunner(
- model,
- optimizeroptimizer=optimizer,
- work_dir=cfg.work_dir,
- loggerlogger=logger,
- metameta=meta)
- # an ugly workaround to make .log and .log.json filenames the same
- runner.timestamp = timestamp
- # fp16 setting
- # register hooks
- runner.register_training_hooks(cfg.lr_config, optimizer_config,
- cfg.checkpoint_config, cfg.log_config,
- cfg.get('momentum_config', None))
- if distributed:
- runner.register_hook(DistSamplerSeedHook())
- # register eval hooks
- if validate:
- # Support batch_size > 1 in validation
- eval_cfg = cfg.get('evaluation', {})
- eval_hook = DistEvalHook if distributed else EvalHook
- runner.register_hook(eval_hook(val_dataloader, **eval_cfg))
- # user-defined hooks
- if cfg.get('custom_hooks', None):
- custom_hooks = cfg.custom_hooks
- assert isinstance(custom_hooks, list), \
- f'custom_hooks expect list type, but got {type(custom_hooks)}'
- for hook_cfg in cfg.custom_hooks:
- assert isinstance(hook_cfg, dict), \
- 'Each item in custom_hooks expects dict type, but got ' \
- f'{type(hook_cfg)}'
- hook_cfghook_cfg = hook_cfg.copy()
- priority = hook_cfg.pop('priority', 'NORMAL')
- hook = build_from_cfg(hook_cfg, HOOKS)
- runner.register_hook(hook, prioritypriority=priority)
4. 总结
本文介绍了hook的概念和应用,并给出了python的实现细则。希望对比有帮助。总结如下:
- hook函数是流程中预定义好的一个步骤,没有实现
- 挂载或者注册时, 流程执行就会执行这个钩子函数
- 回调函数和hook函数功能上是一致的
- hook设计方式带来灵活性,如果流程中有一个步骤,你想让调用方来实现,你可以用hook函数