文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

曙光云使用说明

2023-09-07 10:21

关注

平台链接

https://ac.sugon.com/ac/home/index.html

控制台界面

创建个人工作目录及上传文件。点击概览页面顶端的 E-Shell 菜单栏,进入所连主机的 Shell 终端。在用户目录下新建个人工作目录,如:mkdir ywj2


安装MiniConda(推荐)

参考链接:https://ac.sugon.com/doc/1.0.6/11250/general-handbook/software-tutorial/DeepLearning-1.html

使用wget下载(下载时间可能有点久)

wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.9.2-Linux-x86_64.sh -i https://pypi.tuna.tsinghua.edu.cn/simple/

添加权限并运行

chmod +x Miniconda3-py37_4.9.2-Linux-x86_64.shmkdir -p ~/miniconda3/bash Miniconda3-py37_4.9.2-Linux-x86_64.sh -b -f -p "~/miniconda3/"rm -rf Miniconda3-py37_4.9.2-Linux-x86_64.sh

初始化 conda 环境

~/miniconda3/bin/conda initsource ~/.bashrc

先换个清华源(加速)

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/conda config --set show_channel_urls yes

conda创建python3.7环境

conda create -n yolov5 python=3.7

激活环境

conda activate yolov5

本地安装PyTorch1.7(重点

由于曙光云使用的是国产GPU(即DCU),硬件是基于ROCm的,因此不能适配PyTorch官网下载的包(无法调用DCU),因此只能使用曙光云平台提供的编译好的PyTorch包进行安装。切忌不能使用pip install torch==1.7.0 torchvision的命令直接安装,而应该选择曙光云本地提供的包进行安装。参考此链接:https://ac.sugon.com/doc/1.0.6/11276/general-handbook/compile/pytorch110.html

本地whl所在目录

/public/software/apps/DeepLearning/whl/dtk-21.04

进入whl所在目录看看

cd /public/software/apps/DeepLearning/whl/dtk-21.04

以安装PyTorch1.8为例(torch1.8和torchvision0.9适配)

# 安装torchpip install /public/software/apps/DeepLearning/whl/dtk-21.04/torch-1.8.0a0+56b43f4-cp37-cp37m-linux_x86_64.whl# 安装torchvisionpip install /public/software/apps/DeepLearning/whl/dtk-21.04/torchvision-0.9.0a0-cp37-cp37m-linux_x86_64.whl

根据项目的需求安装其他依赖(记得激活自己的环境再安装)。提示:除了与GPU有关的包(比如torch和torchvision等),其他包我们都可以从网上直接下载,即可以使用pip install numpy 这类命令直接从网上下载,无需曙光云本地提供。

# 安装自己想要的包pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simplepip install Pillowpip install scipy

开始使用

查看所在队列

whichpartition

申请并登录计算节点,进行测试

# salloc -p 队列名 -N 1 --gres=dcu:申请DCU的数量salloc -p wzhdtest -N 1 --gres=dcu:2

登录计算节点

# ssh 节点ssh b01r4n05

切换rocm编译器版本(加载dtk21.04),跟后续使用GPU的关系很大!

module switch compiler/dtk/21.04

在本地创建一个pytorch_env.sh的文件,添加环境变量!

vi  ~/pytorch_env.shexportLD_LIBRARY_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/lib:/public/software/apps/DeepLearning/PyTorch_Lib/lmdb-0.9.24-build/lib:/public/software/apps/DeepLearning/PyTorch_Lib/opencv-2.4.13.6-build/lib:/public/software/apps/DeepLearning/PyTorch_Lib/openblas-0.3.7-build/lib:$LD_LIBRARY_PATH# 记得以后每次登录新的节点时,一定要执行一次source ~/pytorch_env.sh命令,这关系到服务器能不能找到PyTorchsource ~/pytorch_env.sh

激活conda环境(登录到计算节点后会退出之前的环境,所以需要重新激活环境)

conda activate yolov5

进入环境,查看DCU能不能用,依次执行以下命令

pythonimport torchtorch.cuda.is_available()torch.__version__

进入项目文件即可开始训练

cd ~/ywj/yolov5-colabpython train.py --data data/citrus.yaml --cfg models/yolov5s.yaml  --weights weights/yolov5s.pt --epochs 150 --batch-size 4

查看DCU状态的命令

hy-smi

【注意】srun和salloc方式使用时需要保持E-Shell页面常开启,否则此终端对应的作业将出现结束。


补充

显卡相关

使用的显卡:海光 DCU (Deep Computing Unit)

批作业提交(除了使用salloc的另一种提交作业的方式)

提示:除了使用salloc的另一种提交作业的方式,这种方式关了网页程序也能在后台跑

参考链接:https://ac.sugon.com/doc/1.0.6/11276/general-handbook/scheduler/sbatch.html

创建yolo.sh作业文件

#!/bin/bash#SBATCH -o yolo.out#SBATCH --partition=wzhdtest#SBATCH --qos=low#SBATCH -J myFirstGPUJob#SBATCH --nodes=1             #SBATCH --ntasks-per-node=6#SBATCH --gres=dcu:1             module switch compiler/dtk/21.04source ~/pytorch_env.shsource ~/miniconda3/etc/profile.d/conda.shconda activate yolov5cd ~/ywj/yolov5-colabpython train.py --data data/citrus.yaml --cfg models/yolov5s.yaml  --weights weights/yolov5s.pt --epochs 10 --batch-size 8

提交yolo.sh作业文件

sbatch yolo.sh

conda命令相关

//换源conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/conda config --set show_channel_urls yes//恢复原来的源conda config --remove-key channels//新建conda环境conda create --name maskrcnn_benchmark python=3.7//查看环境conda info --env//清理conda缓存conda clean -pconda clean -t//删除环境conda remove --name new_env_name --all//复制环境,这个命令特别有用,假如一个环境有相应版本的PyTorch,那么就可以直接复制环境,再额外安装自己想要的包conda create --name new_env_name --clone old_env_name //导出环境conda env export > environment.yml//导入环境conda env create -f environment.yml//激活环境conda activate maskrcnn_benchmark

最后感谢小伙伴们的学习噢~

来源地址:https://blog.csdn.net/weixin_43800577/article/details/127918593

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯