redis如何设置过期时间?相信很多新手小白还没学会这个技能,通过这篇文章的总结,希望你能学会这个技能。以下资料是实现的步骤。
1、Redis中key的过期时间
通过EXPIRE key seconds命令来设置数据的过期时间。返回1表明设置成功,返回0表明key不存在或者不能成功设置过期时间。在key上设置了过期时间后key将在指定的秒数后被自动删除。被指定了过期时间的key在Redis中被称为是不稳定的。
当key被DEL命令删除或者被SET、GETSET命令重置后与之关联的过期时间会被清除
127.0.0.1:6379> setex s 20 1
OK
127.0.0.1:6379> ttl s
(integer) 17
127.0.0.1:6379> setex s 200 1
OK
127.0.0.1:6379> ttl s
(integer) 195
127.0.0.1:6379> setrange s 3 100
(integer) 6
127.0.0.1:6379> ttl s
(integer) 152
127.0.0.1:6379> get s
"1\x00\x00100"
127.0.0.1:6379> ttl s
(integer) 108
127.0.0.1:6379> getset s 200
"1\x00\x00100"
127.0.0.1:6379> get s
"200"
127.0.0.1:6379> ttl s
(integer) -1
使用PERSIST可以清除过期时间
127.0.0.1:6379> setex s 100 test
OK
127.0.0.1:6379> get s
"test"
127.0.0.1:6379> ttl s
(integer) 94
127.0.0.1:6379> type s
string
127.0.0.1:6379> strlen s
(integer) 4
127.0.0.1:6379> persist s
(integer) 1
127.0.0.1:6379> ttl s
(integer) -1
127.0.0.1:6379> get s
"test"
使用rename只是改了key值
127.0.0.1:6379> expire s 200
(integer) 1
127.0.0.1:6379> ttl s
(integer) 198
127.0.0.1:6379> rename s ss
OK
127.0.0.1:6379> ttl ss
(integer) 187
127.0.0.1:6379> type ss
string
127.0.0.1:6379> get ss
"test"
说明:Redis2.6以后expire精度可以控制在0到1毫秒内,key的过期信息以绝对Unix时间戳的形式存储(Redis2.6之后以毫秒级别的精度存储),所以在多服务器同步的时候,一定要同步各个服务器的时间
2、Redis过期键删除策略
Redis key过期的方式有三种:
(1)、被动删除:当读/写一个已经过期的key时,会触发惰性删除策略,直接删除掉这个过期key
(2)、主动删除:由于惰性删除策略无法保证冷数据被及时删掉,所以Redis会定期主动淘汰一批已过期的key
(3)、当前已用内存超过maxmemory限定时,触发主动清理策略
被动删除
只有key被操作时(如GET),REDIS才会被动检查该key是否过期,如果过期则删除之并且返回NIL。
1、这种删除策略对CPU是友好的,删除操作只有在不得不的情况下才会进行,不会其他的expire key上浪费无谓的CPU时间。
2、但是这种策略对内存不友好,一个key已经过期,但是在它被操作之前不会被删除,仍然占据内存空间。如果有大量的过期键存在但是又很少被访问到,那会造成大量的内存空间浪费。expireIfNeeded(redisDb *db, robj *key)函数位于src/db.c。
int removeExpire(redisDb *db, robj *key) {
redisAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL);
return dictDelete(db->expires,key->ptr) == DICT_OK;
}
void setExpire(redisDb *db, robj *key, long long when) {
dictEntry *kde, *de;
kde = dictFind(db->dict,key->ptr);
redisAssertWithInfo(NULL,key,kde != NULL);
de = dictReplaceRaw(db->expires,dictGetKey(kde));
dictSetSignedIntegerVal(de,when);
}
long long getExpire(redisDb *db, robj *key) {
dictEntry *de;
if (dictSize(db->expires) == 0 ||
(de = dictFind(db->expires,key->ptr)) == NULL) return -1;
redisAssertWithInfo(NULL,key,dictFind(db->dict,key->ptr) != NULL);
return dictGetSignedIntegerVal(de);
}
void propagateExpire(redisDb *db, robj *key) {
robj *argv[2];
argv[0] = shared.del;
argv[1] = key;
incrRefCount(argv[0]);
incrRefCount(argv[1]);
if (server.aof_state != REDIS_AOF_OFF)
feedAppendOnlyFile(server.delCommand,db->id,argv,2);
replicationFeedSlaves(server.slaves,db->id,argv,2);
decrRefCount(argv[0]);
decrRefCount(argv[1]);
}
int expireIfNeeded(redisDb *db, robj *key) {
mstime_t when = getExpire(db,key);
mstime_t now;
if (when < 0) return 0;
if (server.loading) return 0;
now = server.lua_caller ? server.lua_time_start : mstime();
if (server.masterhost != NULL) return now > when;
if (now <= when) return 0;
server.stat_expiredkeys++;
propagateExpire(db,key);
notifyKeyspaceEvent(REDIS_NOTIFY_EXPIRED,
"expired",key,db->id);
return dbDelete(db,key);
}
void expireGenericCommand(redisClient *c, long long basetime, int unit) {
robj *key = c->argv[1], *param = c->argv[2];
long long when;
if (getLongLongFromObjectOrReply(c, param, &when, NULL) != REDIS_OK)
return;
if (unit == UNIT_SECONDS) when *= 1000;
when += basetime;
if (lookupKeyRead(c->db,key) == NULL) {
addReply(c,shared.czero);
return;
}
if (when <= mstime() && !server.loading && !server.masterhost) {
robj *aux;
redisAssertWithInfo(c,key,dbDelete(c->db,key));
server.dirty++;
aux = createStringObject("DEL",3);
rewriteClientCommandVector(c,2,aux,key);
decrRefCount(aux);
signalModifiedKey(c->db,key);
notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",key,c->db->id);
addReply(c, shared.cone);
return;
} else {
setExpire(c->db,key,when);
addReply(c,shared.cone);
signalModifiedKey(c->db,key);
notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"expire",key,c->db->id);
server.dirty++;
return;
}
}
void expireCommand(redisClient *c) {
expireGenericCommand(c,mstime(),UNIT_SECONDS);
}
void expireatCommand(redisClient *c) {
expireGenericCommand(c,0,UNIT_SECONDS);
}
void pexpireCommand(redisClient *c) {
expireGenericCommand(c,mstime(),UNIT_MILLISECONDS);
}
void pexpireatCommand(redisClient *c) {
expireGenericCommand(c,0,UNIT_MILLISECONDS);
}
void ttlGenericCommand(redisClient *c, int output_ms) {
long long expire, ttl = -1;
if (lookupKeyRead(c->db,c->argv[1]) == NULL) {
addReplyLongLong(c,-2);
return;
}
expire = getExpire(c->db,c->argv[1]);
if (expire != -1) {
ttl = expire-mstime();
if (ttl < 0) ttl = 0;
}
if (ttl == -1) {
addReplyLongLong(c,-1);
} else {
addReplyLongLong(c,output_ms ? ttl : ((ttl+500)/1000));
}
}
void ttlCommand(redisClient *c) {
ttlGenericCommand(c, 0);
}
void pttlCommand(redisClient *c) {
ttlGenericCommand(c, 1);
}
void persistCommand(redisClient *c) {
dictEntry *de;
de = dictFind(c->db->dict,c->argv[1]->ptr);
if (de == NULL) {
addReply(c,shared.czero);
} else {
if (removeExpire(c->db,c->argv[1])) {
addReply(c,shared.cone);
server.dirty++;
} else {
addReply(c,shared.czero);
}
}
}
但仅是这样是不够的,因为可能存在一些key永远不会被再次访问到,这些设置了过期时间的key也是需要在过期后被删除的,我们甚至可以将这种情况看作是一种内存泄露----无用的垃圾数据占用了大量的内存,而服务器却不会自己去释放它们,这对于运行状态非常依赖于内存的Redis服务器来说,肯定不是一个好消息
主动删除
先说一下时间事件,对于持续运行的服务器来说, 服务器需要定期对自身的资源和状态进行必要的检查和整理, 从而让服务器维持在一个健康稳定的状态, 这类操作被统称为常规操作(cron job)
在 Redis 中, 常规操作由 redis.c/serverCron 实现, 它主要执行以下操作:
更新服务器的各类统计信息,比如时间、内存占用、数据库占用情况等。
清理数据库中的过期键值对。
对不合理的数据库进行大小调整。
关闭和清理连接失效的客户端。
尝试进行 AOF 或 RDB 持久化操作。
如果服务器是主节点的话,对附属节点进行定期同步。
如果处于集群模式的话,对集群进行定期同步和连接测试。
Redis 将 serverCron 作为时间事件来运行, 从而确保它每隔一段时间就会自动运行一次, 又因为 serverCron 需要在 Redis 服务器运行期间一直定期运行, 所以它是一个循环时间事件: serverCron 会一直定期执行,直到服务器关闭为止。
在 Redis 2.6 版本中, 程序规定 serverCron 每秒运行 10 次, 平均每 100 毫秒运行一次。 从 Redis 2.8 开始, 用户可以通过修改 hz选项来调整 serverCron 的每秒执行次数。
也叫定时删除,这里的“定期”指的是Redis定期触发的清理策略,由位于src/redis.c的activeExpireCycle(void)函数来完成。
serverCron是由redis的事件框架驱动的定位任务,这个定时任务中会调用activeExpireCycle函数,针对每个db在限制的时间REDIS_EXPIRELOOKUPS_TIME_LIMIT内迟可能多的删除过期key,之所以要限制时间是为了防止过长时间 的阻塞影响redis的正常运行。这种主动删除策略弥补了被动删除策略在内存上的不友好。
因此,Redis会周期性的随机测试一批设置了过期时间的key并进行处理。测试到的已过期的key将被删除。典型的方式为,Redis每秒做10次如下的步骤:
(1)随机测试100个设置了过期时间的key
(2)删除所有发现的已过期的key
(3)若删除的key超过25个则重复步骤1
这是一个基于概率的简单算法,基本的假设是抽出的样本能够代表整个key空间,redis持续清理过期的数据直至将要过期的key的百分比降到了25%以下。这也意味着在任何给定的时刻已经过期但仍占据着内存空间的key的量最多为每秒的写操作量除以4.
Redis-3.0.0中的默认值是10,代表每秒钟调用10次后台任务。
除了主动淘汰的频率外,Redis对每次淘汰任务执行的最大时长也有一个限定,这样保证了每次主动淘汰不会过多阻塞应用请求,以下是这个限定计算公式:
#define ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC 25
...
timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;
hz调大将会提高Redis主动淘汰的频率,如果你的Redis存储中包含很多冷数据占用内存过大的话,可以考虑将这个值调大,但Redis作者建议这个值不要超过100。我们实际线上将这个值调大到100,观察到CPU会增加2%左右,但对冷数据的内存释放速度确实有明显的提高(通过观察keyspace个数和used_memory大小)。
可以看出timelimit和server.hz是一个倒数的关系,也就是说hz配置越大,timelimit就越小。换句话说是每秒钟期望的主动淘汰频率越高,则每次淘汰最长占用时间就越短。这里每秒钟的最长淘汰占用时间是固定的250ms(1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/100),而淘汰频率和每次淘汰的最长时间是通过hz参数控制的。
从以上的分析看,当redis中的过期key比率没有超过25%之前,提高hz可以明显提高扫描key的最小个数。假设hz为10,则一秒内最少扫描200个key(一秒调用10次*每次最少随机取出20个key),如果hz改为100,则一秒内最少扫描2000个key;另一方面,如果过期key比率超过25%,则扫描key的个数无上限,但是cpu时间每秒钟最多占用250ms。
当REDIS运行在主从模式时,只有主结点才会执行上述这两种过期删除策略,然后把删除操作”del key”同步到从结点。
maxmemory
当前已用内存超过maxmemory限定时,触发主动清理策略:
volatile-lru:只对设置了过期时间的key进行LRU(默认值)
allkeys-lru : 删除lru算法的key
volatile-random:随机删除即将过期key
allkeys-random:随机删除
volatile-ttl : 删除即将过期的
noeviction : 永不过期,返回错误当mem_used内存已经超过maxmemory的设定,对于所有的读写请求,都会触发redis.c/freeMemoryIfNeeded(void)函数以清理超出的内存。注意这个清理过程是阻塞的,直到清理出足够的内存空间。所以如果在达到maxmemory并且调用方还在不断写入的情况下,可能会反复触发主动清理策略,导致请求会有一定的延迟。
当mem_used内存已经超过maxmemory的设定,对于所有的读写请求,都会触发redis.c/freeMemoryIfNeeded(void)函数以清理超出的内存。注意这个清理过程是阻塞的,直到清理出足够的内存空间。所以如果在达到maxmemory并且调用方还在不断写入的情况下,可能会反复触发主动清理策略,导致请求会有一定的延迟。
清理时会根据用户配置的maxmemory-policy来做适当的清理(一般是LRU或TTL),这里的LRU或TTL策略并不是针对redis的所有key,而是以配置文件中的maxmemory-samples个key作为样本池进行抽样清理。
maxmemory-samples在redis-3.0.0中的默认配置为5,如果增加,会提高LRU或TTL的精准度,redis作者测试的结果是当这个配置为10时已经非常接近全量LRU的精准度了,并且增加maxmemory-samples会导致在主动清理时消耗更多的CPU时间,建议:
(1)尽量不要触发maxmemory,最好在mem_used内存占用达到maxmemory的一定比例后,需要考虑调大hz以加快淘汰,或者进行集群扩容。
(2)如果能够控制住内存,则可以不用修改maxmemory-samples配置;如果Redis本身就作为LRU cache服务(这种服务一般长时间处于maxmemory状态,由Redis自动做LRU淘汰),可以适当调大maxmemory-samples。
以下是上文中提到的配置参数的说明
# Redis calls an internal function to perform many background tasks, like
# closing connections of clients in timeout, purging expired keys that are
# never requested, and so forth.
#
# Not all tasks are performed with the same frequency, but Redis checks for
# tasks to perform according to the specified "hz" value.
#
# By default "hz" is set to 10. Raising the value will use more CPU when
# Redis is idle, but at the same time will make Redis more responsive when
# there are many keys expiring at the same time, and timeouts may be
# handled with more precision.
#
# The range is between 1 and 500, however a value over 100 is usually not
# a good idea. Most users should use the default of 10 and raise this up to
# 100 only in environments where very low latency is required.
hz 10
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key according to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys-random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations
#
# Note: with any of the above policies, Redis will return an error on write
# operations, when there are no suitable keys for eviction.
#
# At the date of writing these commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#
maxmemory-policy noeviction
# LRU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Redis will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs a bit more CPU. 3 is very fast but not very accurate.
#
maxmemory-samples 5
Replication link和AOF文件中的过期处理
为了获得正确的行为而不至于导致一致性问题,当一个key过期时DEL操作将被记录在AOF文件并传递到所有相关的slave。也即过期删除操作统一在master实例中进行并向下传递,而不是各salve各自掌控。
这样一来便不会出现数据不一致的情形。当slave连接到master后并不能立即清理已过期的key(需要等待由master传递过来的DEL操作),slave仍需对数据集中的过期状态进行管理维护以便于在slave被提升为master会能像master一样独立的进行过期处理。
看完这篇文章,你们学会redis设置过期时间的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读。