文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python中Numpy模块使用详解

2024-04-02 19:55

关注

NumPy

NumPy(Numerical Python) 是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Nupmy可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。

NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:

ndarray对象

NumPy 最重要的一个对象是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,可以使用基于 0 的索引访问集合中的项目。

ndarray 对象是用于存放同类型元素的多维数组。ndarray中的每个元素在内存中使用相同大小的块。 ndarray中的每个元素是数据类型对象的对象(称为 dtype)

numpy.array( object ,  dtype = None , ndmin = 0 ,copy = True , order = None ,  subok = False )

 一般只有 object 、dtype和 ndmin 参数常用,其他参数不常用 

import numpy
a=numpy.array([1,2,3]) #一维
b=numpy.array([[1,2,3],[4,5,6]]) #二维
c=numpy.array([1,2,3],dtype=complex) #元素类型为复数
d=numpy.array([1,2,3],ndmin=2) #二维
print(a,type(a))
print(b,type(b))
print(c,type(c))
print(d,type(d))
####################################
[1 2 3] <class 'numpy.ndarray'>
[[1 2 3]
[4 5 6]] <class 'numpy.ndarray'>
[1.+0.j 2.+0.j 3.+0.j] <class 'numpy.ndarray'
[[1 2 3]] <class 'numpy.ndarray'>

​ ​Numpy数据类型​​

Numpy数组属性

NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。

在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。

 ndarray 对象属性有:

常见的属性有下面几种 :

ndarray.shape :  这一数组属性返回一个包含数组纬度的元组,它也可以用于调整数组大小 

import numpy as np
a=np.array([[1,2,3],[4,5,6]])
print(a.shape) #打印shape属性
a.shape=(3,2) #修改shape属性
print(a)
#######################################
(2, 3)
[[1 2]
[3 4]
[5 6]]

 ndarray.ndim: 这一数组属性返回数组的维数

import numpy as np
a=np.arange(24) #np.arange返回0-23的列表类型的数据
print(a.ndim)
b=a.reshape(2,3,4)
print(b)
print(b.ndim)
############################
1
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]

[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
3

ndarray.itemsize

import numpy as np
a=np.array([1,2,3]) #默认是四个字节
print(a.itemsize)
#########################################
4

到此这篇关于Python中Numpy模块使用详解的文章就介绍到这了,更多相关Python Numpy模块内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯