文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Java实现二叉堆、大顶堆和小顶堆

2024-04-02 19:55

关注

什么是二叉堆

二叉堆就是完全二叉树,或者是靠近完全二叉树结构的二叉树。在二叉树建树时采取前序建树就是建立的完全二叉树。也就是二叉堆。所以二叉堆的建堆过程理论上讲和前序建树一样。

什么是大顶堆、小顶堆

二叉堆本质上是一棵近完全的二叉树,那么大顶堆和小顶堆必然也是满足这个结构要求的。在此之上,大顶堆要求对于一个节点来说,它的左右节点都比它小;小顶堆要求对于一个节点来说,它的左右节点都比它大。

建堆

二叉堆建堆本质上和前序建堆差不多,只不过需要考虑的一点就是大小关系,这一点和二叉搜索树建树有点相似,所以可以得出结论,建树,本质上都是递归建树,只不过因为数据结构的大小要求不一样,需要的判断函数不一样,节点进入哪个位置也不一样。

大顶堆和小顶堆也分为稳定和不稳定的堆。稳定和不稳定指如果具备相同的值,那么他们的插入顺序应该和节点顺序一致。

程序实现

首先,定义出基本的堆结构

public class BinaryHeap {

    private Integer value;

    private BinaryHeap leftChild;
    private BinaryHeap rightChild;
}

建堆过程与建二叉树过程一致

public static BinaryHeap buildHeap(BinaryHeap binaryHeap, Integer value) {
    if (Objects.isNull(binaryHeap)) binaryHeap = new BinaryHeap();
    if (Objects.isNull(binaryHeap.getValue())) {
        binaryHeap.setValue(value);
        return binaryHeap;
    }
    if (Objects.isNull(binaryHeap.getLeftChild())) {
        BinaryHeap binaryHeap1 = new BinaryHeap();
        binaryHeap1.setValue(value);
        binaryHeap.setLeftChild(binaryHeap1);
    } else if (Objects.nonNull(binaryHeap.getLeftChild())) {
        if (Objects.isNull(binaryHeap.getRightChild())) {
            BinaryHeap binaryHeap1 = new BinaryHeap();
            binaryHeap1.setValue(value);
            binaryHeap.setRightChild(binaryHeap1);
        } else {
            // TODO: 2022/1/14 左右节点两种都不为null
            if (checkNull(binaryHeap.getLeftChild())) buildHeap(binaryHeap.getLeftChild(), value);
            else if (checkNull(binaryHeap.getRightChild())) buildHeap(binaryHeap.getRightChild(), value);
            else buildHeap(binaryHeap.getLeftChild(), value);
        }

    }
    return binaryHeap;
}

主要原理就是如果当前节点的左节点为空,则把当前值放到左节点,如果左节点不为空,右节点为空,则把值放到右节点。如果左右节点都不为空,就将建树过程转移到下一层,如果左节点有为空的子节点,就转移给左节点,如果左节点没有为空的子节点,且右节点有为空的子节点,那么转移给右节点。如果左右节点都没有为空的子节点,那么也转移给左节点。

以序列2,3,4,5,9,6,8,7为例,按照该算法建立出来的二叉堆结构如下:

{
    "value": 2,
    "left_child": {
        "value": 3,
        "left_child": {
            "value": 4,
            "left_child": {
                "value": 8,
                "left_child": null,
                "right_child": null
            },
            "right_child": {
                "value": 7,
                "left_child": null,
                "right_child": null
            }
        },
        "right_child": {
            "value": 5,
            "left_child": null,
            "right_child": null
        }
    },
    "right_child": {
        "value": 1,
        "left_child": {
            "value": 9,
            "left_child": null,
            "right_child": null
        },
        "right_child": {
            "value": 6,
            "left_child": null,
            "right_child": null
        }
    }
}

建立大顶堆

大顶堆在建堆的基础上,有一个要求,根节点比左右子树的任何节点的值都大。那么建树的过程可以分为两步,对于每一个值,首先按照建树过程,会到二叉堆的最底部,然后通过不断的让自己与自己的根节点做比较,如果自己大于根节点,就交换自己与根节点的位置,递归回溯即可。

逻辑过程

假设现在红色节点组成的已经是一个大顶堆,现在新增了一个节点到这个二叉堆中,而且是比任意节点都大,那么黑色箭头将是该节点的行动路线,它会反复与父级比较,如果大于父级,则交换和父级的关系。

程序实现

public static BinaryHeap up(BinaryHeap father) {
  if (Objects.nonNull(father.getLeftChild())) {
    if (father.getValue() < father.getLeftChild().getValue()) {
      int c = father.getValue();
      father.setValue(father.getLeftChild().getValue());
      father.getLeftChild().setValue(c);
    }
    up(father.getLeftChild());
  }
  if (Objects.nonNull(father.getRightChild())) {
    if (father.getValue() < father.getRightChild().getValue()) {
      int c = father.getValue();
      father.setValue(father.getRightChild().getValue());
      father.getRightChild().setValue(c);
    }
    up(father.getRightChild());
  }
  return father;
}

该方法放在普通建树方法之后,就是大顶堆的建树方法了,总的方法如下:

public static BinaryHeap bigPush(BinaryHeap binaryHeap, Integer value) {
    binaryHeap = buildHeap(binaryHeap, value);
    up(binaryHeap);
    return binaryHeap;
}

还是以序列2,3,4,5,9,6,8,7为例,按照该算法建立出来的大顶堆结构如下:

{
    "value": 9,
    "left_child": {
        "value": 8,
        "left_child": {
            "value": 7,
            "left_child": {
                "value": 2,
                "left_child": null,
                "right_child": null
            },
            "right_child": {
                "value": 4,
                "left_child": null,
                "right_child": null
            }
        },
        "right_child": {
            "value": 3,
            "left_child": null,
            "right_child": null
        }
    },
    "right_child": {
        "value": 6,
        "left_child": {
            "value": 1,
            "left_child": null,
            "right_child": null
        },
        "right_child": {
            "value": 5,
            "left_child": null,
            "right_child": null
        }
    }
}

建立小顶堆

小顶堆与大顶堆类似

逻辑过程

过程与大顶堆一致,不过此时是比父级小就和父级交换。

程序实现

public static BinaryHeap down(BinaryHeap father) {
    if (Objects.nonNull(father.getLeftChild())) {
        if (father.getValue() > father.getLeftChild().getValue()) {
            int c = father.getValue();
            father.setValue(father.getLeftChild().getValue());
            father.getLeftChild().setValue(c);
        }
        down(father.getLeftChild());
    }
    if (Objects.nonNull(father.getRightChild())) {
        if (father.getValue() > father.getRightChild().getValue()) {
            int c = father.getValue();
            father.setValue(father.getRightChild().getValue());
            father.getRightChild().setValue(c);
        }
        down(father.getRightChild());
    }
    return father;
}

这个是向下走的过程,最终代码为:

public static BinaryHeap smallPush(BinaryHeap binaryHeap, Integer value) {
    binaryHeap = buildHeap(binaryHeap, value);
    down(binaryHeap);
    return binaryHeap;
}

以序列2,3,4,5,9,6,8,7为例,按照该算法建立出来的小顶堆结构如下:

{
    "value": 1,
    "left_child": {
        "value": 3,
        "left_child": {
            "value": 4,
            "left_child": {
                "value": 8,
                "left_child": null,
                "right_child": null
            },
            "right_child": {
                "value": 7,
                "left_child": null,
                "right_child": null
            }
        },
        "right_child": {
            "value": 5,
            "left_child": null,
            "right_child": null
        }
    },
    "right_child": {
        "value": 2,
        "left_child": {
            "value": 9,
            "left_child": null,
            "right_child": null
        },
        "right_child": {
            "value": 6,
            "left_child": null,
            "right_child": null
        }
    }
}

从堆顶取数据并重构大小顶堆

public static Integer bigPop(BinaryHeap binaryHeap) {
    Integer val = binaryHeap.getValue();
    if (binaryHeap.getLeftChild().getValue() >= binaryHeap.getRightChild().getValue()) {
        binaryHeap.setValue(binaryHeap.getLeftChild().getValue());
        BinaryHeap binaryHeap1 = mergeTree(binaryHeap.getLeftChild().getLeftChild(), binaryHeap.getLeftChild().getRightChild());
        up(binaryHeap1);
        binaryHeap.setLeftChild(binaryHeap1);
    } else {
        binaryHeap.setValue(binaryHeap.getRightChild().getValue());
        BinaryHeap binaryHeap1 = mergeTree(binaryHeap.getRightChild().getLeftChild(), binaryHeap.getRightChild().getRightChild());
        up(binaryHeap1);
        binaryHeap.setRightChild(binaryHeap1);
    }
    return val;
}

public static Integer smallPop(BinaryHeap binaryHeap) {
    Integer val = binaryHeap.getValue();
    if (binaryHeap.getLeftChild().getValue() <= binaryHeap.getRightChild().getValue()) {
        binaryHeap.setValue(binaryHeap.getLeftChild().getValue());
        BinaryHeap binaryHeap1 = mergeTree(binaryHeap.getLeftChild().getLeftChild(), binaryHeap.getLeftChild().getRightChild());
        down(binaryHeap1);
        binaryHeap.setLeftChild(binaryHeap1);
    } else {
        binaryHeap.setValue(binaryHeap.getRightChild().getValue());
        BinaryHeap binaryHeap1 = mergeTree(binaryHeap.getRightChild().getLeftChild(), binaryHeap.getRightChild().getRightChild());
        down(binaryHeap1);
        binaryHeap.setRightChild(binaryHeap1);
    }
    return val;

}

取出来之后,需要重新调用down或者up函数。以构建小顶堆,取出五次后的结果

public static void main(String[] args) {
        int[] a = new int[]{2, 3, 1, 4, 5, 9, 6, 8, 7};

        BinaryHeap binaryHeap = new BinaryHeap();
        for (int i = 0; i < a.length; i++) {
            binaryHeap = smallPush(binaryHeap, a[i]);
        }
        System.out.println(Json.toJson(smallPop(binaryHeap)));
        System.out.println(Json.toJson(smallPop(binaryHeap)));
        System.out.println(Json.toJson(smallPop(binaryHeap)));
        System.out.println(Json.toJson(smallPop(binaryHeap)));
        System.out.println(Json.toJson(smallPop(binaryHeap)));
        System.out.println(Json.toJson(binaryHeap));
    }

取完后的小顶堆为:

{
    "value": 6,
    "left_child": {
        "value": 7,
        "left_child": {
            "value": 8,
            "left_child": null,
            "right_child": null
        },
        "right_child": null
    },
    "right_child": {
        "value": 9,
        "left_child": null,
        "right_child": null
    }
}

到此这篇关于Java实现二叉堆、大顶堆和小顶堆的文章就介绍到这了,更多相关Java内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯