zipkin的作用
在微服务架构下,一个http请求从发出到响应,中间可能经过了N多服务的调用,或者N多逻辑操作,
如何监控某个服务,或者某个逻辑操作的执行情况,对分析耗时操作,性能瓶颈具有很大价值,
zipkin帮助我们实现了这一监控功能。
环境说明
操作系统:centos 7.6
ip:192.168.31.232
配置:2核4g
python版本:3.5.2
启动zipkin
启动方式有2种,一个是docker,一个jar包。任选其一即可。
本文采用jar包方式启动
docker
docker run --name zipkin -d -p 9411:9411 openzipkin/zipkin
jar包
wget https://dl.bintray.com/openzipkin/maven/io/zipkin/java/zipkin-server/2.12.9/zipkin-server-2.12.9-exec.jar
java -jar zipkin-server-2.12.9-exec.jar
访问zipkin
http://192.168.31.232:9411
效果如下:
使用py_zipkin模块来实现,这里以flask项目来测试。
安装模块
pip3 install py_zipkin pymysql flask
创建项目
新建demo.py
mkdir -p /data/flask_demo/cd /data/flask_demo/vim demo.py
内容如下:
import requests
from flask import Flask
from py_zipkin.zipkin import zipkin_span,create_http_headers_for_new_span
import time
app = Flask(__name__)
app.config.update({
"ZIPKIN_HOST":"127.0.0.1",
"ZIPKIN_PORT":"9411",
"APP_PORT":5000,
# any other app config-y things
})
def do_stuff():
time.sleep(2)
headers = create_http_headers_for_new_span()
requests.get('http://localhost:6000/service1/', headers=headers)
return 'OK'
def http_transport(encoded_span):
# encoding prefix explained in https://github.com/Yelp/py_zipkin#transport
#body = b"\x0c\x00\x00\x00\x01"+encoded_span
body=encoded_span
zipkin_url="http://127.0.0.1:9411/api/v1/spans"
#zipkin_url = "http://{host}:{port}/api/v1/spans".format(
# host=app.config["ZIPKIN_HOST"], port=app.config["ZIPKIN_PORT"])
headers = {"Content-Type": "application/x-thrift"}
# You'd probably want to wrap this in a try/except in case POSTing fails
r=requests.post(zipkin_url, data=body, headers=headers)
print(type(encoded_span))
print(encoded_span)
print(body)
print(r)
print(r.content)
@app.route('/')
def index():
with zipkin_span(
service_name='webapp',
span_name='index',
transport_handler=http_transport,
port=5000,
sample_rate=100, #0.05, # Value between 0.0 and 100.0
):
with zipkin_span(service_name='webapp', span_name='do_stuff'):
do_stuff()
time.sleep(1)
return 'OK', 200
if __name__=='__main__':
app.run(host="0.0.0.0",port=5000,debug=True)
新建server1.py
from flask import request
import requests
from flask import Flask
from py_zipkin.zipkin import zipkin_span,ZipkinAttrs
import time
import pymysql
app = Flask(__name__)
app.config.update({
"ZIPKIN_HOST":"127.0.0.1",
"ZIPKIN_PORT":"9411",
"APP_PORT":5000,
# any other app config-y things
})
def do_stuff():
time.sleep(2)
with zipkin_span(service_name='service1', span_name='service1_db_search'):
db_search()
return 'OK'
def db_search():
# 打开数据库连接
db = pymysql.connect("127.0.0.1", "root", "123456", "mysql", charset='utf8')
# 使用cursor()方法获取操作游标
cursor = db.cursor()
# 使用execute方法执行SQL语句
cursor.execute("SELECT VERSION()")
# 使用 fetchone() 方法获取一条数据
data = cursor.fetchone()
print("Database version : %s " % data)
# 关闭数据库连接
db.close()
def http_transport(encoded_span):
# encoding prefix explained in https://github.com/Yelp/py_zipkin#transport
#body = b"\x0c\x00\x00\x00\x01" + encoded_span
body=encoded_span
zipkin_url="http://127.0.0.1:9411/api/v1/spans"
#zipkin_url = "http://{host}:{port}/api/v1/spans".format(
# host=app.config["ZIPKIN_HOST"], port=app.config["ZIPKIN_PORT"])
headers = {"Content-Type": "application/x-thrift"}
# You'd probably want to wrap this in a try/except in case POSTing fails
requests.post(zipkin_url, data=body, headers=headers)
@app.route('/service1/')
def index():
with zipkin_span(
service_name='service1',
zipkin_attrs=ZipkinAttrs(
trace_id=request.headers['X-B3-TraceID'],
span_id=request.headers['X-B3-SpanID'],
parent_span_id=request.headers['X-B3-ParentSpanID'],
flags=request.headers['X-B3-Flags'],
is_sampled=request.headers['X-B3-Sampled'],
),
span_name='index_service1',
transport_handler=http_transport,
port=6000,
sample_rate=100, #0.05, # Value between 0.0 and 100.0
):
with zipkin_span(service_name='service1', span_name='service1_do_stuff'):
do_stuff()
return 'OK', 200
if __name__=='__main__':
app.run(host="0.0.0.0",port=6000,debug=True)
运行demo.py
python3 demo.py
运行server1.py
python3 server1.py
访问5000端口
点击查证,点击下面的结果
效果如下:
可以看到,有webapp和services两个service,5个span标签,可以清楚看到service和service,service和span,span和span之间的关系,和各span耗时情况。
点击依赖,效果如下:
点击webapp,效果如下:
官网api文档:https://zipkin.io/zipkin-api/#/default/get_traces
这里演示一下,调用2个api
services
返回与span终结点关联的所有服务名称的列表。
http://192.168.31.232:9411/api/v2/services
效果如下:
traces
调用此请求将检索与以下筛选器匹配的跟踪。
http://192.168.31.232:9411/api/v2/traces
效果如下:
这里的tags,可以显示错误信息。
有错误时,就是红色的,点击红色区块
就可以看到具体信息
这个错误信息表示,无法连接到mysql。因为这台机器,还没有mysql服务。
为了消除这个错误,可以再启动一个mysql数据库。
mkdir -p /data/mysql
docker pull mysql:5.7
docker run -itd -p 3306:3306 --name wiki-mysql -e MYSQL_ROOT_PASSWORD=123456 --restart=always --restart=on-failure:1 --oom-score-adj -1000 --privileged=true --log-opt max-size=10m --log-opt max-file=1 -v /data/mysql:/var/lib/mysql mysql:5.7
重新启动server1.py
再次访问5000端口
再次查询一次,就没有红色了
如果需要做报警,可以通过调用api,获取到error信息,进行统一的邮件通知。
注意:zipkin的数据,默认是存在内存中的,如果重启服务,会造成数据丢失。
在现有数据库基础上,新建实例,实例名为zipkin。
CREATE DATABASE zipkin DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci;
然后执行官网建库脚本
https://github.com/openzipkin/zipkin/blob/master/zipkin-storage/mysql-v1/src/main/resources/mysql.sql
执行sql之后,会建立3张表
这样我们的数据库就建好了。
执行
STORAGE_TYPE=mysql MYSQL_USER=root MYSQL_PASS=123456 MYSQL_HOST=127.0.0.1 MYSQL_TCP_PORT=3306 java -jar zipkin-server-2.12.9-exec.jar
这样启动zipkin,就自动连上mysql,并存储数据了。
如图,大功告成
注意,一般我们都在后台运行zipkin,所以用nohup的方式启动,命令如下
STORAGE_TYPE=mysql MYSQL_USER=root MYSQL_PASS=123456 MYSQL_HOST=127.0.0.1 MYSQL_TCP_PORT=3306 nohup java -jar zipkin-server-2.12.9-exec.jar &
本文参考链接:
https://www.cnblogs.com/shijingjing07/p/9340131.html
https://www.cnblogs.com/tseng-iOS/p/8005889.html