文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C++超详细快速掌握二叉搜索树

2024-04-02 19:55

关注

二叉搜索树概念与操作

二叉搜索树的概念

二叉搜索树又称二叉排序树,若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;若它的右子树不为空,则右子树上所有节点的值都大于根节点的值,它的左右子树也分别未二叉搜索树。也可以是一颗空树。

int a[] = { 5, 3, 4, 1, 7, 8, 2, 6, 0, 9 };

二叉搜索树的操作

查找

迭代:


	Node* Find(const K& key)
	{
		Node* cur = _root;	
		while (cur)
		{
			if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}

		return nullptr;
	}

递归:


	Node* _FindR(Node* root, const K& key)
	{
		if (root == nullptr)
			return nullptr;

		if (root->_key < key)
			return _FindR(root->_right, key);
		else if (root->_key > key)
			return _FindR(root->_left, key);
		else
			return root;
	}

插入

树为空,则直接插入

树不为空,按二叉搜索树性质查找插入位置,插入新节点

迭代:


	bool Insert(const K& key)
	{
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}

		//查找要插入的位置
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(key);
		if (parent->_key < cur->_key)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		return true;
	}

递归:


	bool _InsertR(Node*& root, const K& key)
	{
		if (root == nullptr)
		{
			root = new Node(key);
			return true;
		}
		else
		{
			if (root->_key < key)
			{
				return _InsertR(root->_left, key);
			}
			else if (root->_key > key)
			{
				return _InsertR(root->_left, key);
			}
			else
			{
				return false;
			}
		}
	}

删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回,否则要删除的结点可能分下面四种情况:

实际情况中1和2或3可以合并,因此真正的删除过程如下:

迭代:


	bool Erase(const K& key)
	{
		Node* parent = nullptr;
		Node* cur = _root;

		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				//删除
				if (cur->_left == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_right;
					}
					else
					{
						if (cur == parent->_left)
						{
							parent->_left = cur->_right;
						}
						else
						{
							parent->_right = cur->_right;
						}
					}
					delete cur;
				}
				else if (cur->_right == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_left;
					}
					else
					{
						if (cur == parent->_left)
						{
							parent->_left = cur->_left;
						}
						else
						{
							parent->_right = cur->_left;
						}
					}
				}
				else
				{
					//找到右树最小节点去替代删除
					Node* minRightParent = cur;
					Node* minRight = cur->_right;
					while (minRight->_left)
					{
						minRightParent = minRight;
						minRight = minRight->_left;
					}

					cur->_key = minRight->_key;

					if (minRight == minRightParent->_left)
						minRightParent->_left = minRight->_right;
					else
						minRightParent->_right = minRight->_right;

					delete minRight;
				}

				return true;
			}
		}

		return false;
	}

递归:


	bool _EraseR(Node*& root, const K& key)
	{
		if (root == nullptr)
			return false;

		if (root->_key < key)
		{
			return _EraseR(root->_right, key);
		}
		else if (root->_key > key)
		{
			return _EraseR(root->_left, key);
		}
		else
		{
			//删除
			Node* del = root;
			if (root->_left == nullptr)
			{
				root = root->_right;
			}
			else if (root->_right == nullptr)
			{
				root = root->_left;
			}
			else
			{
				//替代法删除
				Node* minRight = root->_right;
				while (minRight->_left)
				{
					minRight = minRight->_left;
				}

				root->_key = minRight->_key;

				//转换成递归在右子树中删除最小节点
				return _EraseR(root->_right, minRight->_key);
			}

			delete del;
			return true;
		}
	}

二叉搜索树的应用

1.K模型:K模型即只有key作为关键码,结构中只需要存储key即可,关键码即为需要搜索到的值。比如:给一个单词word,判断该单词是否拼写正确。具体方法如下:1.以单词集合中的每个单词作为key,构建一棵二叉搜索树。2.在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

2.KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见:比如英汉词典就是英语与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对;再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是<word, count>就构成一种键值对。

比如:实现一个简单的英汉词典dict,可以通过英文找到与其对应的中文,具体实现方式如下:1.<单词,中文含义>为键值对构造二叉搜索树,注意:二叉搜索树需要比较,键值对比较时只比较Key。2.查询英文单词时,只需要给出英文单词,就可快速找到与其对应的Key。


namespace KEY_VALUE {
	template<class K, class V>
	struct BSTreeNode
	{
		BSTreeNode<K, V>* _left;
		BSTreeNode<K, V>* _right;
		K _key;
		V _value;

		BSTreeNode(const K& key, const V& value)
			:_left(nullptr)
			,_right(nullptr)
			,_key(key)
			,_value(value)
		{}
	};

	template<class K, class V>
	class BSTree {
		typedef BSTreeNode<K, V> Node;
	public:
		V& operator[](const K& key)
		{
			pair<Node*, bool> ret = Insert(key, V());
			return ret.first->_value;
		}

		pair<Node*, bool> Insert(const K& key, const V& value)
		{
			if (_root == nullptr)
			{
				_root = new Node(key, value);
				return make_pair(_root, true);
			}

			//查找要插入的位置
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return make_pair(cur, false);
				}
			}

			cur = new Node(key, value);
			if (parent->_key < cur->_key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}

			return make_pair(cur, true);
		}

		Node* Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return cur;
				}
			}

			return nullptr;
		}

		bool Erase(const K& key)
		{
			Node* cur = _root;
			Node* parent = nullptr;

			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					//删除
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							if (cur == parent->_left)
							{
								parent->_left = cur->_left;
							}
							else
							{
								parent->_right = cur->_right;
							}
						}

						delete cur;
					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							if (cur == parent->_left)
							{
								parent->_left = cur->_left;
							}
							else
							{
								parent->_right = cur->_right;
							}
						}

						delete cur;
					}
					else
					{
						//找到右树最小结点去替代删除
						Node* minRightParent = cur;
						Node* minRight = cur->_left;
						while (minRight->_left)
						{
							minRightParent = minRight;
							minRight = minRight->_left;
						}

						cur->_key = minRight->_key;

						if (minRight = minRightParent->_left)
							minRightParent->_left = minRight->right;
						else
							minRightParent->_right = minRight->_right;

						delete minRight;
					}

					return true;
				}
			}

			return false;
		}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}

	private:
		void _InOrder(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}

			_InOrder(root->_left);
			cout << root->_key << ":" << root->_value << endl;
			_InOrder(root->_right);
		}
	private:
		Node* _root = nullptr;
	};
}

void Test2()
{
	KEY_VALUE::BSTree<string, string> dict;
	dict.Insert("sort", "排序");
	dict.Insert("insert", "插入");
	dict.Insert("tree", "树");
	dict.Insert("right", "右边");

	string str;
	while (cin >> str)
	{
		if (str == "q")
		{
			break;
		}
		else
		{
			auto ret = dict.Find(str);
			if (ret == nullptr)
			{
				cout << "拼写错误,请检查你的单词" << endl;
			}
			else
			{
				cout << ret->_key <<"->"<< ret->_value << endl;
			}
		}
	}
}


void Test3()
{
	//统计字符串出现次数,也是经典key/value
	string str[] = { "sort", "sort", "tree", "insert", "sort", "tree", "sort", "test", "sort" };
	KEY_VALUE::BSTree<string, int> countTree;
	//for (auto& e : str)
	//{
	//	auto ret = countTree.Find(e);
	//	if (ret == nullptr)
	//	{
	//		countTree.Insert(e, 1);
	//	}
	//	else
	//	{
	//		ret->_value++;
	//	}
	//}

	for (auto& e : str)
	{
		countTree[e]++;
	}

	countTree.InOrder();
}

二叉树的性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,比较的次数越多。

但对于同一个关键码集合,如果关键码插入的次序不同,可能得到不同结构的二叉搜索树

最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:logN

最差情况下,二叉搜索树退化为单支树,其平均比较次数为:N/2

到此这篇关于C++ 超详细快速掌握二叉搜索树 的文章就介绍到这了,更多相关C++ 二叉搜索树 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯