前言
这篇是推动大家异步编程的思想的线程池的准备篇,要做好监控,让大家使用无后顾之忧,敬畏生产。
为什么需要对线程池进行监控
Java线程池作为最常使用到的并发工具,相信大家都不陌生,但是你真的确定使用对了吗?大名鼎鼎的阿里Java代码规范要求我们不使用 Executors来快速创建线程池,但是抛弃Executors,使用其它方式创建线程池就一定不会出现问题吗?本质上对于我们来说线程池本身的运行过程是一个黑盒,我们没办法了解线程池中的运行状态时,出现问题没有办法及时判断和预警。面对这种黑盒操作必须通过监控方式让其透明化,这样对我们来说才能更好的使用好线程池。因此必须对线程池做监控。
如何做线程池的监控
对于如何做监控,本质就是涉及三点,分别是数据采集、数据存储以及大盘的展示,接下来我们分说下这三点;
数据采集
采集什么数据,对于我们来说需要采集就是黑盒的数据,什么又是线程池的黑盒数据,其实也就是整个线程处理的整个流程,在整个流程中,我们可以通过ThreadPoolExecutor中的七个方法获取数据,通过这七个方法采集到的数据就可以使线程池的执行过程透明化。
getCorePoolSize():获取核心线程数;
getMaximumPoolSize:获取最大线程数;
getQueue():获取线程池中的阻塞队列,并通过阻塞队列中的方法获取队列长度、元素个数等;
getPoolSize():获取线程池中的工作线程数(包括核心线程和非核心线程);
getActiveCount():获取活跃线程数,也就是正在执行任务的线程;
getLargestPoolSize():获取线程池曾经到过的最大工作线程数;
getTaskCount():获取历史已完成以及正在执行的总的任务数量;
除了我们了解的这些流程以外,ThreadPoolExecutor中还提供了三种钩子函数,
beforeExecute():Worker线程执行任务之前会调用的方法;
afterExecute():在Worker线程执行任务之后会调用的方法;
terminated():当线程池从运行状态变更到TERMINATED状态之前调用的方法;
对于beforeExecute和afterExecute可以理解为使用Aop监听线程执行的时间,这样子我们可以对每个线程运行的时间整体做监控,terminated可以理解为线程关闭时候的监控,这样我们就可以整体获取采集到线程池生命周期的所有数据了。
数据存储以及大盘的展示
对于存储我们这个比较适合采用时序性数据库,此外现在很多成熟的监控产品都可以满足我们大屏展示的诉求,这里推荐下美团Cat和Prometheus,这里不展开进行讲解,大家可以根据自己公司的监控产品进行选择,对于不同的方案采取的存储形式会有些差异,甚至自己都可以自定义实现一个功能,反正难度不大。
进一步扩展以及思考
在实际的项目开发中我们会遇到以下场景:
不同的业务采用同一个线程池,这样如果某个服务阻塞,会影响到整体共用线程池的所有服务,会触发线程池的拒绝策略;
流量突然增加,需要动态调整线程池的参数,这个时候又不能重启;
针对这两种场景,我们对线程池再次进行了深入的思考:
如何合理配置线程池参数;
如何动态调整线程池参数;
如何给不同的服务之间做线程池的隔离;
如何合理配置线程池参数
关于这个问题面试的时候也是经常被问到,我只能说这个问题开始就是一个坑,针对与CPU密集型和I/O密集型,线程池的参数是有不同设计的,也不是遵守几个公式就可以搞定,当然可以参考,我认为对于线程池合理的参数的配置是经过多次调整得到的,甚至增加和减少业务都会影响一些参数,我不太建议大家每天背书式的CPU密集型就是N+1,非CPU密集型就是2N,因此我们更希望看到线程池动态配置。
如何动态调整线程池参数
关于如何动态调整线程池,还是回到我们场景问题的解决上,对于流量突增核心就是提升线程池的处理速度,那如何提升线程池的处理速度,有两种方式,一种是加快业务的处理,也就是消费的快,显然这种在运行的业务中我们想改变还是比较困难,这个可以作为复盘的重点;还有一种就是增加消费者,增加消费者的重点就是调整核心线程数以及非核心线程数的数量。
居于这种思考,这个时候我们需要看下ThreadPoolExecutor线程池源码,首先看下开始定义的变量,通过变量的设计我们就会发现大师就是大师,大师通过AtomicInteger修饰的ctl变量,高3位存储了线程池的状态,低29存储线程的个数,通过一个变量完成两件事情,完成状态判断以及限制线程最大个数。使用一个HashSet存储Worker的引用,而Worker继承了AbstractQueuedSynchronizer,实现一个一个不可冲入的独占锁保证线程的安全性。
//用来标记线程池状态(高3位),线程个数(低29位)
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
//工作状态存储在高3位中
private static final int COUNT_BITS = Integer.SIZE - 3;
//线程个数所能表达的最大数值
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
//线程池状态
//RUNNING -1 能够接收新任务,也可以处理阻塞队列中的任务
private static final int RUNNING = -1 << COUNT_BITS;
//SHUTDOWN 0 不可以接受新任务,继续处理阻塞队列中的任务
private static final int SHUTDOWN = 0 << COUNT_BITS;
//STOP 1 不接收新任务,不处理阻塞队列中的任务,并且会中断正在处理的任务
private static final int STOP = 1 << COUNT_BITS;
//TIDYING 2 所有任务已经中止,且工作线程数量为0,最后变迁到这个状态的线程将要执行terminated()钩子方法,只会有一个线程执行这个方法;
private static final int TIDYING = 2 << COUNT_BITS;
//TERMINATED 3 中止状态,已经执行完terminated()钩子方法
private static final int TERMINATED = 3 << COUNT_BITS;
//任务队列,当线程池中的线程达到核心线程数量时,再提交任务 就会直接提交到 workQueue
private final BlockingQueue<Runnable> workQueue;
//线程池全局锁,增加worker减少worker时需要持有mainLock,修改线程池运行状态时,也需要
private final ReentrantLock mainLock = new ReentrantLock();
//线程池中真正存放worker的地方。
private final HashSet<Worker> workers = new HashSet<Worker>();
private final Condition termination = mainLock.newCondition();
//记录线程池生命周期内 线程数最大值
private int largestPoolSize;
//记录线程池所完成任务总数
private long completedTaskCount;
//创建线程会使用线程工厂
private volatile ThreadFactory threadFactory;
//拒绝策略
private volatile RejectedExecutionHandler handler;
//存活时间
private volatile long keepAliveTime;
//控制核心线程数量内的线程 是否可以被回收。true 可以,false不可以。
private volatile boolean allowCoreThreadTimeOut;
//核心线程池数量
private volatile int corePoolSize;
//线程池最大数量
private volatile int maximumPoolSize;
我们的重点看的是volatile修饰的corePoolSize、maximumPoolSize以及keepAliveTime,当然threadFactory和handler也可以看下,不过这两个不是我们解决动态调整线程池的关键。对于这些volatile修饰的关键的变量,从并发角度思考的,必然是有并发读写的操作才使用volatile修饰的,在指标采集中我们看到其get的方法,对于写的操作我们可以猜测肯定提供了set的方式,这个时候我们可以搜索下setCorePoolSize,果不其然我们真的搜索到了。
public void setCorePoolSize(int corePoolSize) {
if (corePoolSize < 0)
throw new IllegalArgumentException();
int delta = corePoolSize - this.corePoolSize;
this.corePoolSize = corePoolSize;
//新设置的corePoolSize小于当前核心线程数的时候
//会调用interruptIdleWorkers方法来中断空闲的工作线程
if (workerCountOf(ctl.get()) > corePoolSize)
interruptIdleWorkers();
else if (delta > 0) {
//当设置的值大于当前值的时候核心线程数的时候
//按照等待队列中的任务数量来创建新的工作线程
int k = Math.min(delta, workQueue.size());
while (k-- > 0 && addWorker(null, true)) {
if (workQueue.isEmpty())
break;
}
}
}
接下来我们看下interruptIdleWorkers的源码,此处源码使用ReentrantLock可重入锁,因为Worker的是通过一个全局的HashSer存储,这里通过ReentrantLock保证线程安全。
private void interruptIdleWorkers(boolean onlyOne) {
//可重入锁
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (Worker w : workers) {
Thread t = w.thread;
if (!t.isInterrupted() && w.tryLock()) {
try {
//中断当前线程
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
}
if (onlyOne)
break;
}
} finally {
mainLock.unlock();
}
}
接下来我们在验证一下是否存在其他相关的参数设置,如下:
public void setMaximumPoolSize(int maximumPoolSize) {
if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
throw new IllegalArgumentException();
this.maximumPoolSize = maximumPoolSize;
if (workerCountOf(ctl.get()) > maximumPoolSize)
interruptIdleWorkers();
}
public void setKeepAliveTime(long time, TimeUnit unit) {
if (time < 0)
throw new IllegalArgumentException();
if (time == 0 && allowsCoreThreadTimeOut())
throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
long keepAliveTime = unit.toNanos(time);
long delta = keepAliveTime - this.keepAliveTime;
this.keepAliveTime = keepAliveTime;
if (delta < 0)
interruptIdleWorkers();
}
public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
if (handler == null)
throw new NullPointerException();
this.handler = handler;
}
这里我们会发现一个问题BlockingQueue的队列容量不能修改,看到美团的文章提供的一个可修改的队列ResizableCapacityLinkedBlockingQueue,于是乎去看了一下LinkedBlockingQueue的源码,发现了关于capacity是一个final修饰的,这个时候我就思考一番,这个地方采用volatile修饰,对外暴露可修改,这样就实现了动态修改阻塞队列的大小。
如何给不同的服务之间做线程池的隔离
关于如何给不同服务之间做线程池的隔离,这里我们可以采用Hystrix的舱壁模式,也就是说针对不同服务类型的服务单独创建线程池,这样就可以实现服务之间不相互影响,不会因为某个服务导致整体的服务影响都阻塞。
实现方案
聊了这么多前置的知识储备,接下来我们来聊聊实现方案,整体的实现方案我们建立在Spring Boot的基础实现,采用Spring Cloud刷新动态配置,采用该方式比较合适单体应用,对于有Appllo和Nacos可以通过监听配置方式的来动态刷新。
Maven依赖如下;
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-context</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.5</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-core</artifactId>
<version>1.2.3</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.3</version>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Hoxton.SR7</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
配置信息如下:
monitor.threadpool.executors[0].thread-pool-name=first-monitor-thread-pool
monitor.threadpool.executors[0].core-pool-size=4
monitor.threadpool.executors[0].max-pool-size=8
monitor.threadpool.executors[0].queue-capacity=100
monitor.threadpool.executors[1].thread-pool-name=second-monitor-thread-pool
monitor.threadpool.executors[1].core-pool-size=2
monitor.threadpool.executors[1].max-pool-size=4
monitor.threadpool.executors[1].queue-capacity=40
@Data
public class ThreadPoolProperties {
private String threadPoolName;
* 核心线程数
private Integer corePoolSize = Runtime.getRuntime().availableProcessors();
* 最大线程数
private Integer maxPoolSize;
* 队列最大数量
private Integer queueCapacity;
* 拒绝策略
private String rejectedExecutionType = "AbortPolicy";
* 空闲线程存活时间
private Long keepAliveTime = 1L;
* 空闲线程存活时间单位
private TimeUnit unit = TimeUnit.MILLISECONDS;
}
* 动态刷新线程池配置
* @since 2022-03-13 14:09
@ConfigurationProperties(prefix = "monitor.threadpool")
@Component
public class DynamicThreadPoolProperties {
private List<ThreadPoolProperties> executors;
自定可修改阻塞队列大小的方式如下:
public class ResizableCapacityLinkedBlockingQueue<E> extends AbstractQueue<E>
implements BlockingDeque<E>, java.io.Serializable {
private static final long serialVersionUID = -387911632671998426L;
static final class Node<E> {
E item;
Node<E> prev;
Node<E> next;
Node(E x) {
item = x;
}
}
transient Node<E> first;
transient Node<E> last;
private transient int count;
private volatile int capacity;
public int getCapacity() {
return capacity;
}
public void setCapacity(int capacity) {
this.capacity = capacity;
}
final ReentrantLock lock = new ReentrantLock();
private final Condition notEmpty = lock.newCondition();
private final Condition notFull = lock.newCondition();
public ResizableCapacityLinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
public ResizableCapacityLinkedBlockingQueue(int capacity) {
if (capacity <= 0) {
throw new IllegalArgumentException();
}
this.capacity = capacity;
}
public ResizableCapacityLinkedBlockingQueue(Collection<? extends E> c) {
this(Integer.MAX_VALUE);
final ReentrantLock lock = this.lock;
lock.lock(); // Never contended, but necessary for visibility
try {
for (E e : c) {
if (e == null) {
throw new NullPointerException();
}
if (!linkLast(new Node<E>(e))) {
throw new IllegalStateException("Deque full");
}
}
} finally {
lock.unlock();
}
}
// Basic linking and unlinking operations, called only while holding lock
private boolean linkFirst(Node<E> node) {
// assert lock.isHeldByCurrentThread();
if (count >= capacity) {
return false;
}
Node<E> f = first;
node.next = f;
first = node;
if (last == null) {
last = node;
} else {
f.prev = node;
}
++count;
notEmpty.signal();
return true;
}
private boolean linkLast(Node<E> node) {
// assert lock.isHeldByCurrentThread();
if (count >= capacity) {
return false;
}
Node<E> l = last;
node.prev = l;
last = node;
if (first == null) {
first = node;
} else {
l.next = node;
}
++count;
notEmpty.signal();
return true;
}
private E unlinkFirst() {
// assert lock.isHeldByCurrentThread();
Node<E> f = first;
if (f == null) {
return null;
}
Node<E> n = f.next;
E item = f.item;
f.item = null;
f.next = f; // help GC
first = n;
if (n == null) {
last = null;
} else {
n.prev = null;
}
--count;
notFull.signal();
return item;
}
private E unlinkLast() {
// assert lock.isHeldByCurrentThread();
Node<E> l = last;
if (l == null) {
return null;
}
Node<E> p = l.prev;
E item = l.item;
l.item = null;
l.prev = l; // help GC
last = p;
if (p == null) {
first = null;
} else {
p.next = null;
}
--count;
notFull.signal();
return item;
}
void unlink(Node<E> x) {
// assert lock.isHeldByCurrentThread();
Node<E> p = x.prev;
Node<E> n = x.next;
if (p == null) {
unlinkFirst();
} else if (n == null) {
unlinkLast();
} else {
p.next = n;
n.prev = p;
x.item = null;
// Don't mess with x's links. They may still be in use by
// an iterator.
--count;
notFull.signal();
}
}
// BlockingDeque methods
@Override
public void addFirst(E e) {
if (!offerFirst(e)) {
throw new IllegalStateException("Deque full");
}
}
@Override
public void addLast(E e) {
if (!offerLast(e)) {
throw new IllegalStateException("Deque full");
}
}
@Override
public boolean offerFirst(E e) {
if (e == null) {
throw new NullPointerException();
}
Node<E> node = new Node<E>(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
return linkFirst(node);
} finally {
lock.unlock();
}
}
@Override
public boolean offerLast(E e) {
if (e == null) throw new NullPointerException();
Node<E> node = new Node<E>(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
return linkLast(node);
} finally {
lock.unlock();
}
}
@Override
public void putFirst(E e) throws InterruptedException {
if (e == null) {
throw new NullPointerException();
}
Node<E> node = new Node<E>(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
while (!linkFirst(node)) {
notFull.await();
}
} finally {
lock.unlock();
}
}
@Override
public void putLast(E e) throws InterruptedException {
if (e == null) {
throw new NullPointerException();
}
Node<E> node = new Node<E>(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
while (!linkLast(node)) {
notFull.await();
}
} finally {
lock.unlock();
}
}
@Override
public boolean offerFirst(E e, long timeout, TimeUnit unit)
throws InterruptedException {
if (e == null) {
throw new NullPointerException();
}
Node<E> node = new Node<E>(e);
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (!linkFirst(node)) {
if (nanos <= 0) {
return false;
}
nanos = notFull.awaitNanos(nanos);
}
return true;
} finally {
lock.unlock();
}
}
@Override
public boolean offerLast(E e, long timeout, TimeUnit unit)
throws InterruptedException {
if (e == null) throw new NullPointerException();
Node<E> node = new Node<E>(e);
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (!linkLast(node)) {
if (nanos <= 0) {
return false;
}
nanos = notFull.awaitNanos(nanos);
}
return true;
} finally {
lock.unlock();
}
}
@Override
public E removeFirst() {
E x = pollFirst();
if (x == null) {
throw new NoSuchElementException();
}
return x;
}
@Override
public E removeLast() {
E x = pollLast();
if (x == null) {
throw new NoSuchElementException();
}
return x;
}
@Override
public E pollFirst() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return unlinkFirst();
} finally {
lock.unlock();
}
}
@Override
public E pollLast() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return unlinkLast();
} finally {
lock.unlock();
}
}
@Override
public E takeFirst() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
E x;
while ((x = unlinkFirst()) == null) {
notEmpty.await();
}
return x;
} finally {
lock.unlock();
}
}
@Override
public E takeLast() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
E x;
while ((x = unlinkLast()) == null) {
notEmpty.await();
}
return x;
} finally {
lock.unlock();
}
}
@Override
public E pollFirst(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
E x;
while ((x = unlinkFirst()) == null) {
if (nanos <= 0) {
return null;
}
nanos = notEmpty.awaitNanos(nanos);
}
return x;
} finally {
lock.unlock();
}
}
@Override
public E pollLast(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
E x;
while ((x = unlinkLast()) == null) {
if (nanos <= 0) {
return null;
}
nanos = notEmpty.awaitNanos(nanos);
}
return x;
} finally {
lock.unlock();
}
}
@Override
public E getFirst() {
E x = peekFirst();
if (x == null) {
throw new NoSuchElementException();
}
return x;
}
@Override
public E getLast() {
E x = peekLast();
if (x == null) {
throw new NoSuchElementException();
}
return x;
}
@Override
public E peekFirst() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (first == null) ? null : first.item;
} finally {
lock.unlock();
}
}
@Override
public E peekLast() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (last == null) ? null : last.item;
} finally {
lock.unlock();
}
}
@Override
public boolean removeFirstOccurrence(Object o) {
if (o == null) {
return false;
}
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node<E> p = first; p != null; p = p.next) {
if (o.equals(p.item)) {
unlink(p);
return true;
}
}
return false;
} finally {
lock.unlock();
}
}
@Override
public boolean removeLastOccurrence(Object o) {
if (o == null) {
return false;
}
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node<E> p = last; p != null; p = p.prev) {
if (o.equals(p.item)) {
unlink(p);
return true;
}
}
return false;
} finally {
lock.unlock();
}
}
// BlockingQueue methods
@Override
public boolean add(E e) {
addLast(e);
return true;
}
@Override
public boolean offer(E e) {
return offerLast(e);
}
@Override
public void put(E e) throws InterruptedException {
putLast(e);
}
@Override
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
return offerLast(e, timeout, unit);
}
@Override
public E remove() {
return removeFirst();
}
@Override
public E poll() {
return pollFirst();
}
@Override
public E take() throws InterruptedException {
return takeFirst();
}
@Override
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
return pollFirst(timeout, unit);
}
@Override
public E element() {
return getFirst();
}
@Override
public E peek() {
return peekFirst();
}
@Override
public int remainingCapacity() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return capacity - count;
} finally {
lock.unlock();
}
}
@Override
public int drainTo(Collection<? super E> c) {
return drainTo(c, Integer.MAX_VALUE);
}
@Override
public int drainTo(Collection<? super E> c, int maxElements) {
if (c == null) {
throw new NullPointerException();
}
if (c == this) {
throw new IllegalArgumentException();
}
if (maxElements <= 0) {
return 0;
}
final ReentrantLock lock = this.lock;
lock.lock();
try {
int n = Math.min(maxElements, count);
for (int i = 0; i < n; i++) {
c.add(first.item); // In this order, in case add() throws.
unlinkFirst();
}
return n;
} finally {
lock.unlock();
}
}
// Stack methods
@Override
public void push(E e) {
addFirst(e);
}
@Override
public E pop() {
return removeFirst();
}
// Collection methods
@Override
public boolean remove(Object o) {
return removeFirstOccurrence(o);
}
@Override
public int size() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return count;
} finally {
lock.unlock();
}
}
@Override
public boolean contains(Object o) {
if (o == null) {
return false;
}
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node<E> p = first; p != null; p = p.next) {
if (o.equals(p.item)) {
return true;
}
}
return false;
} finally {
lock.unlock();
}
}
//
// public boolean addAll(Collection<? extends E> c) {
// if (c == null)
// throw new NullPointerException();
// if (c == this)
// throw new IllegalArgumentException();
// final ReentrantLock lock = this.lock;
// lock.lock();
// try {
// boolean modified = false;
// for (E e : c)
// if (linkLast(e))
// modified = true;
// return modified;
// } finally {
// lock.unlock();
// }
// }
@Override
@SuppressWarnings("unchecked")
public Object[] toArray() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] a = new Object[count];
int k = 0;
for (Node<E> p = first; p != null; p = p.next) {
a[k++] = p.item;
}
return a;
} finally {
lock.unlock();
}
}
@Override
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (a.length < count) {
a = (T[]) java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), count);
}
int k = 0;
for (Node<E> p = first; p != null; p = p.next) {
a[k++] = (T) p.item;
}
if (a.length > k) {
a[k] = null;
}
return a;
} finally {
lock.unlock();
}
}
@Override
public String toString() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Node<E> p = first;
if (p == null) {
return "[]";
}
StringBuilder sb = new StringBuilder();
sb.append('[');
for (; ; ) {
E e = p.item;
sb.append(e == this ? "(this Collection)" : e);
p = p.next;
if (p == null) {
return sb.append(']').toString();
}
sb.append(',').append(' ');
}
} finally {
lock.unlock();
}
}
@Override
public void clear() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node<E> f = first; f != null; ) {
f.item = null;
Node<E> n = f.next;
f.prev = null;
f.next = null;
f = n;
}
first = last = null;
count = 0;
notFull.signalAll();
} finally {
lock.unlock();
}
}
@Override
public Iterator<E> iterator() {
return new Itr();
}
@Override
public Iterator<E> descendingIterator() {
return new DescendingItr();
}
private abstract class AbstractItr implements Iterator<E> {
Node<E> next;
E nextItem;
private Node<E> lastRet;
abstract Node<E> firstNode();
abstract Node<E> nextNode(Node<E> n);
AbstractItr() {
// set to initial position
final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock;
lock.lock();
try {
next = firstNode();
nextItem = (next == null) ? null : next.item;
} finally {
lock.unlock();
}
}
private Node<E> succ(Node<E> n) {
// Chains of deleted nodes ending in null or self-links
// are possible if multiple interior nodes are removed.
for (; ; ) {
Node<E> s = nextNode(n);
if (s == null) {
return null;
} else if (s.item != null) {
return s;
} else if (s == n) {
return firstNode();
} else {
n = s;
}
}
}
void advance() {
final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock;
lock.lock();
try {
// assert next != null;
next = succ(next);
nextItem = (next == null) ? null : next.item;
} finally {
lock.unlock();
}
}
@Override
public boolean hasNext() {
return next != null;
}
@Override
public E next() {
if (next == null) {
throw new NoSuchElementException();
}
lastRet = next;
E x = nextItem;
advance();
return x;
}
@Override
public void remove() {
Node<E> n = lastRet;
if (n == null) {
throw new IllegalStateException();
}
lastRet = null;
final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock;
lock.lock();
try {
if (n.item != null) {
unlink(n);
}
} finally {
lock.unlock();
}
}
}
private class Itr extends AbstractItr {
@Override
Node<E> firstNode() {
return first;
}
@Override
Node<E> nextNode(Node<E> n) {
return n.next;
}
}
private class DescendingItr extends AbstractItr {
@Override
Node<E> firstNode() {
return last;
}
@Override
Node<E> nextNode(Node<E> n) {
return n.prev;
}
}
static final class LBDSpliterator<E> implements Spliterator<E> {
static final int MAX_BATCH = 1 << 25; // max batch array size;
final ResizableCapacityLinkedBlockingQueue<E> queue;
Node<E> current; // current node; null until initialized
int batch; // batch size for splits
boolean exhausted; // true when no more nodes
long est; // size estimate
LBDSpliterator(ResizableCapacityLinkedBlockingQueue<E> queue) {
this.queue = queue;
this.est = queue.size();
}
@Override
public long estimateSize() {
return est;
}
@Override
public Spliterator<E> trySplit() {
Node<E> h;
final ResizableCapacityLinkedBlockingQueue<E> q = this.queue;
int b = batch;
int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
if (!exhausted &&
((h = current) != null || (h = q.first) != null) &&
h.next != null) {
Object[] a = new Object[n];
final ReentrantLock lock = q.lock;
int i = 0;
Node<E> p = current;
lock.lock();
try {
if (p != null || (p = q.first) != null) {
do {
if ((a[i] = p.item) != null) {
++i;
}
} while ((p = p.next) != null && i < n);
}
} finally {
lock.unlock();
}
if ((current = p) == null) {
est = 0L;
exhausted = true;
} else if ((est -= i) < 0L) {
est = 0L;
}
if (i > 0) {
batch = i;
return Spliterators.spliterator
(a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
Spliterator.CONCURRENT);
}
}
return null;
}
@Override
public void forEachRemaining(Consumer<? super E> action) {
if (action == null) {
throw new NullPointerException();
}
final ResizableCapacityLinkedBlockingQueue<E> q = this.queue;
final ReentrantLock lock = q.lock;
if (!exhausted) {
exhausted = true;
Node<E> p = current;
do {
E e = null;
lock.lock();
try {
if (p == null) {
p = q.first;
}
while (p != null) {
e = p.item;
p = p.next;
if (e != null) {
break;
}
}
} finally {
lock.unlock();
}
if (e != null) {
action.accept(e);
}
} while (p != null);
}
}
@Override
public boolean tryAdvance(Consumer<? super E> action) {
if (action == null) {
throw new NullPointerException();
}
final ResizableCapacityLinkedBlockingQueue<E> q = this.queue;
final ReentrantLock lock = q.lock;
if (!exhausted) {
E e = null;
lock.lock();
try {
if (current == null) {
current = q.first;
}
while (current != null) {
e = current.item;
current = current.next;
if (e != null) {
break;
}
}
} finally {
lock.unlock();
}
if (current == null) {
exhausted = true;
}
if (e != null) {
action.accept(e);
return true;
}
}
return false;
}
@Override
public int characteristics() {
return Spliterator.ORDERED | Spliterator.NONNULL |
Spliterator.CONCURRENT;
}
}
@Override
public Spliterator<E> spliterator() {
return new LBDSpliterator<E>(this);
}
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
// Write out capacity and any hidden stuff
s.defaultWriteObject();
// Write out all elements in the proper order.
for (Node<E> p = first; p != null; p = p.next) {
s.writeObject(p.item);
}
// Use trailing null as sentinel
s.writeObject(null);
} finally {
lock.unlock();
}
}
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
count = 0;
first = null;
last = null;
// Read in all elements and place in queue
for (; ; ) {
@SuppressWarnings("unchecked")
E item = (E) s.readObject();
if (item == null) {
break;
}
add(item);
}
}
}
自定义线程池,增加每个线程处理的耗时,以及平均耗时、最大耗时、最小耗时,以及输出监控日志信息等等;
public class ThreadPoolMonitor extends ThreadPoolExecutor {
private static final Logger LOGGER = LoggerFactory.getLogger(ThreadPoolMonitor.class);
private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
private String poolName;
private Long minCostTime;
private Long maxCostTime;
private AtomicLong totalCostTime = new AtomicLong();
private ThreadLocal<Long> startTimeThreadLocal = new ThreadLocal<>();
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue, String poolName) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), poolName);
}
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler, String poolName) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), handler, poolName);
}
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory, String poolName) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, defaultHandler);
this.poolName = poolName;
}
public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
TimeUnit unit, BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory, RejectedExecutionHandler handler, String poolName) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler);
this.poolName = poolName;
}
@Override
public void shutdown() {
// 统计已执行任务、正在执行任务、未执行任务数量
LOGGER.info("{} 关闭线程池, 已执行任务: {}, 正在执行任务: {}, 未执行任务数量: {}",
this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());
super.shutdown();
}
@Override
public List<Runnable> shutdownNow() {
// 统计已执行任务、正在执行任务、未执行任务数量
LOGGER.info("{} 立即关闭线程池,已执行任务: {}, 正在执行任务: {}, 未执行任务数量: {}",
this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());
return super.shutdownNow();
}
@Override
protected void beforeExecute(Thread t, Runnable r) {
startTimeThreadLocal.set(System.currentTimeMillis());
}
@Override
protected void afterExecute(Runnable r, Throwable t) {
long costTime = System.currentTimeMillis() - startTimeThreadLocal.get();
startTimeThreadLocal.remove();
maxCostTime = maxCostTime > costTime ? maxCostTime : costTime;
if (getCompletedTaskCount() == 0) {
minCostTime = costTime;
}
minCostTime = minCostTime < costTime ? minCostTime : costTime;
totalCostTime.addAndGet(costTime);
LOGGER.info("{}-pool-monitor: " +
"任务耗时: {} ms, 初始线程数: {}, 核心线程数: {}, 执行的任务数量: {}, " +
"已完成任务数量: {}, 任务总数: {}, 队列里缓存的任务数量: {}, 池中存在的最大线程数: {}, " +
"最大允许的线程数: {}, 线程空闲时间: {}, 线程池是否关闭: {}, 线程池是否终止: {}",
this.poolName,
costTime, this.getPoolSize(), this.getCorePoolSize(), this.getActiveCount(),
this.getCompletedTaskCount(), this.getTaskCount(), this.getQueue().size(), this.getLargestPoolSize(),
this.getMaximumPoolSize(), this.getKeepAliveTime(TimeUnit.MILLISECONDS), this.isShutdown(), this.isTerminated());
}
public Long getMinCostTime() {
return minCostTime;
}
public Long getMaxCostTime() {
return maxCostTime;
}
public long getAverageCostTime(){
if(getCompletedTaskCount()==0||totalCostTime.get()==0){
return 0;
}
return totalCostTime.get()/getCompletedTaskCount();
}
static class MonitorThreadFactory implements ThreadFactory {
private static final AtomicInteger poolNumber = new AtomicInteger(1);
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix;
MonitorThreadFactory(String poolName) {
SecurityManager s = System.getSecurityManager();
group = Objects.nonNull(s) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();
namePrefix = poolName + "-pool-" + poolNumber.getAndIncrement() + "-thread-";
}
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0);
if (t.isDaemon()) {
t.setDaemon(false);
}
if (t.getPriority() != Thread.NORM_PRIORITY) {
t.setPriority(Thread.NORM_PRIORITY);
}
return t;
}
}
}
动态修改线程池的类,通过Spring的监听器监控配置刷新方法,实现动态更新线程池的参数;
@Component
@Slf4j
public class DynamicThreadPoolManager {
@Autowired
private DynamicThreadPoolProperties dynamicThreadPoolProperties;
public Map<String, ThreadPoolMonitor> threadPoolExecutorMap = new HashMap<>();
public Map<String, ThreadPoolMonitor> getThreadPoolExecutorMap() {
return threadPoolExecutorMap;
}
@PostConstruct
public void init() {
createThreadPools(dynamicThreadPoolProperties);
}
private void createThreadPools(DynamicThreadPoolProperties dynamicThreadPoolProperties) {
dynamicThreadPoolProperties.getExecutors().forEach(config -> {
if (!threadPoolExecutorMap.containsKey(config.getThreadPoolName())) {
ThreadPoolMonitor threadPoolMonitor = new ThreadPoolMonitor(
config.getCorePoolSize(),
config.getMaxPoolSize(),
config.getKeepAliveTime(),
config.getUnit(),
new ResizableCapacityLinkedBlockingQueue<>(config.getQueueCapacity()),
RejectedExecutionHandlerEnum.getRejectedExecutionHandler(config.getRejectedExecutionType()),
config.getThreadPoolName()
);
threadPoolExecutorMap.put(config.getThreadPoolName(),
threadPoolMonitor);
}
});
}
private void changeThreadPools(DynamicThreadPoolProperties dynamicThreadPoolProperties) {
dynamicThreadPoolProperties.getExecutors().forEach(config -> {
ThreadPoolExecutor threadPoolExecutor = threadPoolExecutorMap.get(config.getThreadPoolName());
if (Objects.nonNull(threadPoolExecutor)) {
threadPoolExecutor.setCorePoolSize(config.getCorePoolSize());
threadPoolExecutor.setMaximumPoolSize(config.getMaxPoolSize());
threadPoolExecutor.setKeepAliveTime(config.getKeepAliveTime(), config.getUnit());
threadPoolExecutor.setRejectedExecutionHandler(RejectedExecutionHandlerEnum.getRejectedExecutionHandler(config.getRejectedExecutionType()));
BlockingQueue<Runnable> queue = threadPoolExecutor.getQueue();
if (queue instanceof ResizableCapacityLinkedBlockingQueue) {
((ResizableCapacityLinkedBlockingQueue<Runnable>) queue).setCapacity(config.getQueueCapacity());
}
}
});
}
@EventListener
public void envListener(EnvironmentChangeEvent event) {
log.info("配置发生变更" + event);
changeThreadPools(dynamicThreadPoolProperties);
}
}
DynamicThreadPoolPropertiesController对外暴露两个方法,第一个通过ContextRefresher提供对外刷新配置的接口,实现及时更新配置信息,第二提供一个查询接口的方法,
@RestController
public class DynamicThreadPoolPropertiesController {
@Autowired
private ContextRefresher contextRefresher;
private DynamicThreadPoolProperties dynamicThreadPoolProperties;
private DynamicThreadPoolManager dynamicThreadPoolManager;
@PostMapping("/threadPool/properties")
public void update() {
ThreadPoolProperties threadPoolProperties =
dynamicThreadPoolProperties.getExecutors().get(0);
threadPoolProperties.setCorePoolSize(20);
threadPoolProperties.setMaxPoolSize(50);
threadPoolProperties.setQueueCapacity(200);
threadPoolProperties.setRejectedExecutionType("CallerRunsPolicy");
contextRefresher.refresh();
}
@GetMapping("/threadPool/properties")
public Map<String, Object> queryThreadPoolProperties() {
Map<String, Object> metricMap = new HashMap<>();
List<Map> threadPools = new ArrayList<>();
dynamicThreadPoolManager.getThreadPoolExecutorMap().forEach((k, v) -> {
ThreadPoolMonitor threadPoolMonitor = (ThreadPoolMonitor) v;
Map<String, Object> poolInfo = new HashMap<>();
poolInfo.put("thread.pool.name", k);
poolInfo.put("thread.pool.core.size", threadPoolMonitor.getCorePoolSize());
poolInfo.put("thread.pool.largest.size", threadPoolMonitor.getLargestPoolSize());
poolInfo.put("thread.pool.max.size", threadPoolMonitor.getMaximumPoolSize());
poolInfo.put("thread.pool.thread.count", threadPoolMonitor.getPoolSize());
poolInfo.put("thread.pool.max.costTime", threadPoolMonitor.getMaxCostTime());
poolInfo.put("thread.pool.average.costTime", threadPoolMonitor.getAverageCostTime());
poolInfo.put("thread.pool.min.costTime", threadPoolMonitor.getMinCostTime());
poolInfo.put("thread.pool.active.count", threadPoolMonitor.getActiveCount());
poolInfo.put("thread.pool.completed.taskCount", threadPoolMonitor.getCompletedTaskCount());
poolInfo.put("thread.pool.queue.name", threadPoolMonitor.getQueue().getClass().getName());
poolInfo.put("thread.pool.rejected.name", threadPoolMonitor.getRejectedExecutionHandler().getClass().getName());
poolInfo.put("thread.pool.task.count", threadPoolMonitor.getTaskCount());
threadPools.add(poolInfo);
});
metricMap.put("threadPools", threadPools);
return metricMap;
}
整体上的流程到这里就完成了,算是一个Demo版,对于该组件更深入的思考我认为还可以做以下三件事情:
应该以starter的形式嵌入到应用,通过判断启动类加载的Appllo、Nacos还是默认实现;
对外可以Push、也可以是日志,还可以支持各种库,提供丰富的输出形式,这个
到此这篇关于基于Spring Boot的线程池监控方案的文章就介绍到这了,更多相关Spring Boot的线程池监控内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!