你有没有想过用python制作一个Minecraft?在github上就有这样一个python程序(链接:https://github.com/zifan-wang/Minecraft.git),玩起来还像模像样的:
在游戏的文件夹中共有这些文件:
1.main.py
代码:(如有需要可复制,不需要可直接跳过)
import sysimport randomimport timeimport numba as nbimport threadingfrom collections import dequefrom pyglet import imagefrom pyglet.gl import *from pyglet.graphics import TextureGroupfrom pyglet.window import key, mousefrom settings import *SEED = random.randint(10, 1000000)#656795(种子"akioi") # 世界种子print('seed:', SEED)def cube_vertices(x, y, z, n): # 返回立方体的顶点,大小为2n。 return [ x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, # top x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, # bottom x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, # left x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, # right x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, # front x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, # back ]def tex_coord(x, y, n=8): # 返回纹理的边界顶点。 m = 1.0 / n dx = x * m dy = y * m return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + mdef tex_coords(top, bottom, side): # 返回顶部、底部和侧面的纹理列表。 top = tex_coord(*top) bottom = tex_coord(*bottom) side = tex_coord(*side) result = [] result.extend(top) result.extend(bottom) result.extend(side * 4) return resultGRASS = tex_coords((1, 0), (0, 1), (0, 0))SNOW = tex_coords((4, 0), (0, 1), (1, 3))SAND = tex_coords((1, 1), (1, 1), (1, 1))DIRT = tex_coords((0, 1), (0, 1), (0, 1))STONE = tex_coords((2, 0), (2, 0), (2, 0))ENDSTONE = tex_coords((2, 1), (2, 1), (2, 1))WATER = tex_coords((0, 4), (0, 4), (0, 4))ICE = tex_coords((3, 1), (3, 1), (3, 1))WOOD = tex_coords((0, 2), (0, 2), (3, 0))LEAF = tex_coords((0, 3), (0, 3), (0, 3))BRICK = tex_coords((1, 2), (1, 2), (1, 2))PUMKEY = tex_coords((2, 2), (3, 3), (2, 3))MELON = tex_coords((2, 4), (2, 4), (1, 4))CLOUD = tex_coords((3, 2), (3, 2), (3, 2))TNT = tex_coords((4, 2), (4, 3), (4, 1))DIMO = tex_coords((3, 4), (3, 4), (3, 4))IRNO = tex_coords((4, 4), (4, 4), (4, 4))COAL = tex_coords((5, 0), (5, 0), (5, 0))GOLDO = tex_coords((5, 1), (5, 1), (5, 1))# 立方体的6个面FACES = [ ( 0, 1, 0), ( 0,-1, 0), (-1, 0, 0), ( 1, 0, 0), ( 0, 0, 1), ( 0, 0,-1),]random.seed(SEED)def normalize(position): # 将三维坐标'position'的x、y、z取近似值 x, y, z = position x, y, z = (round(x), round(y), round(z)) return (x, y, z)def sectorize(position): x, y, z = normalize(position) x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE return (x, 0, z)persistence = round(random.uniform(0.25, 0.45), 6)Number_Of_Octaves = random.randint(3, 5)PMAGN = persistence * 16HAMPL = 8threads = deque() # 多线程队列@nb.jit(nopython=True, fastmath=True)def Noise(x, y): n = x + y * 57 n = (n * 8192) ^ n return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0)@nb.jit(nopython=True, fastmath=True)def SmoothedNoise(x, y): corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16 sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8 center = Noise(x, y) / 4 return corners + sides + center@nb.jit(nopython=True, fastmath=True)def Cosine_Interpolate(a, b, x): ft = x * 3.1415927 f = (1 - math.cos(ft)) * 0.5 return a*(1-f) + b*f@nb.jit(nopython=True, fastmath=True)def Linear_Interpolate(a, b, x): return a*(1-x) + b*xdef InterpolatedNoise(x, y): integer_X = int(x) fractional_X = x - integer_X integer_Y = int(y) fractional_Y = y - integer_Y v1 = SmoothedNoise(integer_X, integer_Y) v2 = SmoothedNoise(integer_X + 1, integer_Y) v3 = SmoothedNoise(integer_X, integer_Y + 1) v4 = SmoothedNoise(integer_X + 1, integer_Y + 1) i1 = Cosine_Interpolate(v1, v2, fractional_X) i2 = Cosine_Interpolate(v3, v4, fractional_X) return Cosine_Interpolate(i1, i2, fractional_Y)def PerlinNoise(x, y): x = abs(x) y = abs(y) noise = 0 p = persistence n = Number_Of_Octaves for i in range(n): frequency = pow(2,i) amplitude = pow(p,i) noise = noise + InterpolatedNoise(x * frequency, y * frequency) * amplitude return noiseclass mbatch: def __init__(self): self.batch = {} def add(self, x, z, *args): x = int(x / 64) * 64 z = int(z / 64) * 64 if (x, z) not in self.batch: self.batch[(x, z)] = pyglet.graphics.Batch() return self.batch[(x, z)].add(*args) def draw(self, dx, dz): dx = int(dx / 64) * 64 dz = int(dz / 64) * 64 for ax, az in DNRC: x = dx + ax z = dz + az if (x, z) in self.batch: self.batch[(x, z)].draw()class Model(object): def __init__(self): self.batch = mbatch() #pyglet.graphics.Batch() self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture()) # 纹理列表 self.world = {} # 地图 self.shown = {} # 显示的方块 self._shown = {} # 显示的纹理 self.pool = {} # 水池 self.sectors = {} self.areat = {} self.queue = deque() # 指令队列 print("Loading...") self.dfy = self._initialize() print("OK") def tree(self, y, x, z, flag=True): # 生成树 th = random.randint(4, 6) ts = random.randint(th // 2, 4) if flag: for i in range(y, y + th): self.add_block((x, i, z), WOOD) for dy in range(y + th, y + th + 2): for dx in range(x - ts, x + ts + 1): for dz in range(z - ts, z + ts + 1): self.add_block((dx, dy, dz), LEAF) for dy in range(y + th + 2, y + th + ts + 2): ts -= 1 for dx in range(x - ts, x + ts + 1): for dz in range(z - ts, z + ts + 1): self.add_block((dx, dy, dz), LEAF) else: for i in range(y, y + th): self._enqueue(self.add_block, (x, i, z), WOOD) for dy in range(y + th, y + th + 2): for dx in range(x - ts, x + ts + 1): for dz in range(z - ts, z + ts + 1): self._enqueue(self.add_block, (dx, dy, dz), LEAF) for dy in range(y + th + 2, y + th + ts + 2): ts -= 1 for dx in range(x - ts, x + ts + 1): for dz in range(z - ts, z + ts + 1): self._enqueue(self.add_block, (dx, dy, dz), LEAF) def _initialize(self): # 初始化世界 hl = WORLDLEN // 2 mn = 0 gmap = [[0 for x in range(0, WORLDLEN)]for z in range(0, WORLDLEN)] for x in range(-hl, hl): for z in range(-hl, hl): gmap[x][z] += round(PerlinNoise(x / PMAGN, z / PMAGN) * HAMPL) mn = min(mn, gmap[x][z]) mn = abs(mn) self.mn = mn for x in range(-hl, hl): for z in range(-hl, hl): self.areat[(int(x / BASELEN) * BASELEN, int(z / BASELEN) * BASELEN)] = 1 gmap[x][z] += mn if gmap[x][z] < 2: self.add_block((x, -1, z), random.choice([SAND, STONE])) self.pool[(x, 0, z)] = 1 self._show_block((x, 0, z), WATER) self.pool[(x, 1, z)] = 1 self._show_block((x, 1, z), WATER) else: for y in range(-1, gmap[x][z]): if y < 2:self.add_block((x, y, z), random.choice([STONE, STONE, STONE, DIMO, IRNO, COAL, IRNO, COAL, GOLDO, STONE, STONE, STONE])) else:self.add_block((x, y, z), DIRT) self.add_block((x, gmap[x][z], z), GRASS) self.add_block((x, -2, z), ENDSTONE) for x in range(-hl, hl, 4): for z in range(-hl, hl, 4): if x == 0 and z == 0: continue if random.randint(0, 3) == 1 and gmap[x][z] > 1: self.tree(gmap[x][z] + 1, x, z) for i in range(x, x + 4): for j in range(z, z + 4):self._show_block((i, 30, j), CLOUD) elif random.randint(0, 4) == 2 and gmap[x][z] > 2: self.add_block((x, gmap[x][z] + 1, z), random.choice([PUMKEY, MELON])) return gmap[0][0] + 2 def initpart(self, dx, dz): gmap = [[0 for x in range(0, WORLDLEN)]for z in range(0, WORLDLEN)] if self.areat[(dx, dz)] < 3: HAMPL = 8 elif self.areat[(dx, dz)] == 3: HAMPL = 48 else: HAMPL = 56 for x in range(0, BASELEN): for z in range(0, BASELEN): gmap[x][z] += round(PerlinNoise((x + dx) / PMAGN, (z + dz) / PMAGN) * HAMPL) mode = self.areat[(dx, dz)] for x in range(0, BASELEN): for z in range(0, BASELEN): gmap[x][z] += self.mn xx = x + dx zz = z + dz if gmap[x][z] < 2: self._enqueue(self.add_block, (xx, -1, zz), random.choice([SAND, STONE])) if mode != 1: self._enqueue(self.add_block, (xx, 0, zz), ICE) self._enqueue(self.add_block, (xx, 1, zz), ICE) else: self.pool[(xx, 0, zz)] = 1 self._enqueue(self._show_block, (xx, 0, zz), WATER) self.pool[(xx, 1, zz)] = 1 self._enqueue(self._show_block, (xx, 1, zz), WATER) else: for y in range(-1, gmap[x][z]): if y < 2:self._enqueue(self.add_block, (xx, y, zz), random.choice([STONE, STONE, STONE, DIMO, IRNO, COAL, IRNO, COAL, GOLDO, STONE, STONE, STONE])) else:if HAMPL > 16: self._enqueue(self.add_block, (xx, y, zz), random.choice([STONE, STONE, STONE, COAL, STONE, STONE, STONE]))else: self._enqueue(self.add_block, (xx, y, zz), DIRT) self._enqueue(self.add_block, (xx, gmap[x][z], zz), GRASS if mode == 1 else SNOW) self._enqueue(self.add_block, (xx, -2, zz), ENDSTONE) for x in range(0, BASELEN, 4): for z in range(0, BASELEN, 4): xx = x + dx zz = z + dz if random.randint(0, 3) == 1 and gmap[x][z] > 1: self.tree(gmap[x][z] + 1, xx, zz, False) for i in range(xx, xx + 4): for j in range(zz, zz + 4):self._enqueue(self._show_block, (i, 30, j), CLOUD) elif random.randint(0, 4) == 2 and gmap[x][z] > 2: self._enqueue(self.add_block, (xx, gmap[x][z] + 1, zz), random.choice([PUMKEY, MELON])) def hit_test(self, position, vector, max_distance=8): m = 8 x, y, z = position dx, dy, dz = vector previous = None for _ in range(max_distance * m): key = normalize((x, y, z)) if key != previous and key in self.world: return key, previous previous = key x, y, z = x + dx / m, y + dy / m, z + dz / m return None, None def exposed(self, position): x, y, z = position for dx, dy, dz in FACES: if (x + dx, y + dy, z + dz) not in self.world: return True return False def add_block(self, position, texture, immediate=True): if position in self.world: self.remove_block(position, immediate) self.world[position] = texture self.sectors.setdefault(sectorize(position), []).append(position) if immediate: if self.exposed(position):# 如果看不见就不显示 self.show_block(position) self.check_neighbors(position) def remove_block(self, position, immediate=True): del self.world[position] self.sectors[sectorize(position)].remove(position) if immediate: if position in self.shown: self.hide_block(position) self.check_neighbors(position) def check_neighbors(self, position): x, y, z = position for dx, dy, dz in FACES: key = (x + dx, y + dy, z + dz) if key not in self.world: continue if self.exposed(key):# 方块周围看到的显示看不到的隐藏 if key not in self.shown: self.show_block(key) else: if key in self.shown: self.hide_block(key) def show_block(self, position, immediate=True): texture = self.world[position] self.shown[position] = texture if immediate: self._show_block(position, texture) else: self._enqueue(self._show_block, position, texture) def _show_block(self, position, texture): x, y, z = position vertex_data = cube_vertices(x, y, z, 0.5) texture_data = list(texture) self._shown[position] = self.batch.add(x, z, 24, GL_QUADS, self.group, ('v3f/static', vertex_data), ('t2f/static', texture_data)) def hide_block(self, position, immediate=True): self.shown.pop(position) if immediate: self._hide_block(position) else: self._enqueue(self._hide_block, position) def _hide_block(self, position): self._shown.pop(position).delete() def show_sector(self, sector): for position in self.sectors.get(sector, []): if position not in self.shown and self.exposed(position): self.show_block(position, False) def hide_sector(self, sector): for position in self.sectors.get(sector, []): if position in self.shown: self.hide_block(position, False) def change_sectors(self, before, after): before_set = set() after_set = set() pad = 4 for dx in range(-pad, pad + 1): for dy in [0]: for dz in range(-pad, pad + 1): if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2: continue if before: x, y, z = before before_set.add((x + dx, y + dy, z + dz)) if after: x, y, z = after after_set.add((x + dx, y + dy, z + dz)) show = after_set - before_set hide = before_set - after_set for sector in show: self.show_sector(sector) for sector in hide: self.hide_sector(sector) def _enqueue(self, func, *args): self.queue.append((func, args)) def _dequeue(self): func, args = self.queue.popleft() func(*args) def process_queue(self): start = time.perf_counter() while threads and time.perf_counter() - start < 0.9 / TICKS_PER_SEC: threading.Thread(target=self.initpart, args=threads.popleft()).start() while self.queue and time.perf_counter() - start < 0.9 / TICKS_PER_SEC: self._dequeue() def process_entire_queue(self): while self.queue: self._dequeue()class Window(pyglet.window.Window): def __init__(self, *args, **kwargs): super(Window, self).__init__(*args, **kwargs) self.exclusive = False self.flying = False # 是否在飞行 self.swimming = False # 是否在游泳 self.walking = True # 是否在走路 self.jumping = False # 是否在跳 self.model = Model() self.strafe = [0, 0] self.position = (0, self.model.dfy, 0) self.rotation = (0, 0) self.sector = None self.reticle = None self.dy = 0 self.pw = False self.pa = False self.ps = False self.pd = False self.inventory = [GRASS, DIRT, STONE, SAND, WOOD, BRICK, PUMKEY, MELON, TNT] self.block = self.inventory[0] self.num_keys = [ key._1, key._2, key._3, key._4, key._5, key._6, key._7, key._8, key._9, key._0] self.label = pyglet.text.Label('', font_name='Arial', font_size=18, x=10, y=self.height - 10, anchor_x='left', anchor_y='top', color=(0, 0, 0, 255)) pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC) def set_exclusive_mouse(self, exclusive): super(Window, self).set_exclusive_mouse(exclusive) self.exclusive = exclusive def get_sight_vector(self): x, y = self.rotation m = math.cos(math.radians(y)) dy = math.sin(math.radians(y)) dx = math.cos(math.radians(x - 90)) * m dz = math.sin(math.radians(x - 90)) * m return (dx, dy, dz) def get_motion_vector(self): if any(self.strafe): x, y = self.rotation strafe = math.degrees(math.atan2(*self.strafe)) y_angle = math.radians(y) x_angle = math.radians(x + strafe) if self.flying or self.swimming: m = math.cos(y_angle) dy = math.sin(y_angle) if self.strafe[1]: dy = 0.0 m = 1 if self.strafe[0] > 0: dy *= -1 dx = math.cos(x_angle) * m dz = math.sin(x_angle) * m else: dy = 0.0 dx = math.cos(x_angle) dz = math.sin(x_angle) else: dy = 0.0 dx = 0.0 dz = 0.0 return (dx, dy, dz) def update(self, dt): # 刷新 global GTIME global GNIGHT global GDAY glClearColor(0.5 - GTIME * 0.01, 0.69 - GTIME * 0.01, 1.0 - GTIME * 0.01, 1) setup_fog() GTIME += GDAY if GTIME < 23 else GNIGHT if GTIME > 50: GTIME = 50 GNIGHT = -GNIGHT GDAY = -GDAY elif GTIME < 0: GTIME = 0 GNIGHT = -GNIGHT GDAY = -GDAY self.model.process_queue() sector = sectorize(self.position) if sector != self.sector: self.model.change_sectors(self.sector, sector) if self.sector is None: self.model.process_entire_queue() self.sector = sector x, y, z = self.position flag = False for i in range(0, PLAYER_HEIGHT): if normalize((x, y - i, z)) in self.model.pool: flag = True break self.swimming = flag dx = int(self.position[0] / BASELEN) * BASELEN dz = int(self.position[2] / BASELEN) * BASELEN for ax, az in NRC: x = dx + ax z = dz + az if (x, z) not in self.model.areat: if random.randint(0, 3): self.model.areat[(x, z)] = 1 elif random.randint(0, 3): self.model.areat[(x, z)] = 2 else: self.model.areat[(x, z)] = 3 if round(PerlinNoise(x / PMAGN, z / PMAGN) * 8) + self.model.mn < 2: self.model.areat[(x, z)] = 1 for i in range(-1, 2): if self.model.areat[(x, z)] != 1: break for j in range(-1, 2): if (x + i * BASELEN, z + j * BASELEN) in self.model.areat and self.model.areat[(x + i * BASELEN, z + j * BASELEN)] == 2 and random.randint(0, 2) == 0:self.model.areat[(x, z)] = 2break for i in range(-1, 2): if self.model.areat[(x, z)] > 2: break for j in range(-1, 2): if (x + i * BASELEN, z + j * BASELEN) in self.model.areat and self.model.areat[(x + i * BASELEN, z + j * BASELEN)] == 3:self.model.areat[(x, z)] = 4break threads.append((x, z)) m = 8 dt = min(dt, 0.2) if self.jumping: if self.dy == 0: self.dy = JUMP_SPEED for _ in range(m): self._update(dt / m) def _update(self, dt): speed = FLYING_SPEED if self.flying else WALKING_SPEED if self.walking else RUNNING_SPEED if self.swimming: speed = SWIMMING_SPEED d = dt * speed dx, dy, dz = self.get_motion_vector() dx, dy, dz = dx * d, dy * d, dz * d if not self.flying and not self.swimming: self.dy -= dt * GRAVITY self.dy = max(self.dy, -TERMINAL_VELOCITY) dy += self.dy * dt x, y, z = self.position x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT) self.position = (x, y, z) def collide(self, position, height): pad = 0.25 p = list(position) np = normalize(position) for face in FACES: for i in range(3): if not face[i]: continue d = (p[i] - np[i]) * face[i] if d < pad: continue for dy in range(height): op = list(np) op[1] -= dy op[i] += face[i] if tuple(op) not in self.model.world: continue p[i] -= (d - pad) * face[i] if face == (0, -1, 0) or face == (0, 1, 0): self.dy = 0 break return tuple(p) def TNTboom(self, dx, dy, dz): # TNT爆炸 r = 3 self.model.remove_block((dx, dy, dz)) for x in range(dx - r, dx + r + 1): for y in range(dy - r, dy + r + 1): for z in range(dz - r, dz + r + 1): if (x, y, z) not in self.model.world or self.model.world[(x, y, z)] == ENDSTONE: continue if self.model.world[(x, y, z)] == TNT: self.TNTboom(x, y, z) continue d = math.sqrt((x-dx)*(x-dx)+(y-dy)*(y-dy)+(z-dz)*(z-dz)) if d < r - 0.3: self.model.remove_block((x, y, z)) elif d < r + 0.3 and random.randint(0, 1): self.model.remove_block((x, y, z)) def on_mouse_press(self, x, y, button, modifiers): if self.exclusive: vector = self.get_sight_vector() block, previous = self.model.hit_test(self.position, vector) if (button == mouse.RIGHT) or \ ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)): if previous: # 鼠标右击 x, y, z = self.position flag = True for i in range(0, PLAYER_HEIGHT): if previous == normalize((x, y - i, z)):flag = Falsebreak if flag: self.model.add_block(previous, self.block) elif button == pyglet.window.mouse.LEFT and block: # 鼠标左击 texture = self.model.world[block] if texture == TNT: self.TNTboom(block[0], block[1], block[2]) elif texture != ENDSTONE: self.model.remove_block(block) else: self.set_exclusive_mouse(True) def on_mouse_motion(self, x, y, dx, dy): if self.exclusive: m = 0.15 x, y = self.rotation x, y = x + dx * m, y + dy * m y = max(-90, min(90, y)) self.rotation = (x, y) def on_key_press(self, symbol, modifiers): # 键盘按键 if symbol == key.W: self.strafe[0] -= 1 self.pw = True elif symbol == key.S: self.strafe[0] += 1 self.ps = True elif symbol == key.A: self.strafe[1] -= 1 self.pa = True elif symbol == key.D: self.strafe[1] += 1 self.pd = True elif symbol == key.SPACE: self.jumping = True elif symbol == key.R: self.walking = not self.walking elif symbol == key.ESCAPE: self.set_exclusive_mouse(False) elif symbol == key.E: self.set_exclusive_mouse(False) elif symbol == key.TAB: self.flying = not self.flying elif symbol in self.num_keys: index = (symbol - self.num_keys[0]) % len(self.inventory) self.block = self.inventory[index] def on_key_release(self, symbol, modifiers): # 键盘松键 if symbol == key.W: if self.pw: self.strafe[0] += 1 self.pw = False elif symbol == key.S: if self.ps: self.strafe[0] -= 1 self.ps = False elif symbol == key.A: if self.pa: self.strafe[1] += 1 self.pa = False elif symbol == key.D: if self.pd: self.strafe[1] -= 1 self.pd = False elif symbol == key.SPACE: self.jumping = False def on_resize(self, width, height): # label self.label.y = height - 10 # reticle if self.reticle: self.reticle.delete() x, y = self.width // 2, self.height // 2 n = 10 self.reticle = pyglet.graphics.vertex_list(4, ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n)) ) def set_2d(self): # 3d模式 width, height = self.get_size() glDisable(GL_DEPTH_TEST) viewport = self.get_viewport_size() glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1])) glMatrixMode(GL_PROJECTION) glLoadIdentity() glOrtho(0, max(1, width), 0, max(1, height), -1, 1) glMatrixMode(GL_MODELVIEW) glLoadIdentity() def set_3d(self): # 3d模式 width, height = self.get_size() glEnable(GL_DEPTH_TEST) viewport = self.get_viewport_size() glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1])) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluPerspective(65.0, width / float(height), 0.1, 60.0) glMatrixMode(GL_MODELVIEW) glLoadIdentity() x, y = self.rotation glRotatef(x, 0, 1, 0) glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x))) x, y, z = self.position glTranslatef(-x, -y, -z) def on_draw(self): # 绘制 self.clear() self.set_3d() glColor3d(1, 1, 1) self.model.batch.draw(self.position[0], self.position[2]) self.draw_focused_block() self.set_2d() self.draw_label() self.draw_reticle() def draw_focused_block(self): vector = self.get_sight_vector() block = self.model.hit_test(self.position, vector)[0] if block: x, y, z = block vertex_data = cube_vertices(x, y, z, 0.51) glColor3d(0, 0, 0) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data)) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) def draw_label(self): x, y, z = self.position self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % ( pyglet.clock.get_fps(), x, y, z, len(self.model._shown), len(self.model.world)) self.label.draw() def draw_reticle(self): glColor3d(0, 0, 0) self.reticle.draw(GL_LINES)def setup_fog(): # 初始化迷雾和光照 glEnable(GL_FOG) glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5 - GTIME * 0.01, 0.69 - GTIME * 0.01, 1.0 - GTIME * 0.01, 1)) glHint(GL_FOG_HINT, GL_DONT_CARE) glFogi(GL_FOG_MODE, GL_LINEAR) glFogf(GL_FOG_START, 30.0) glFogf(GL_FOG_END, 60.0) glLightfv(GL_LIGHT0, GL_POSITION, (GLfloat * 4)(0.0, 0.0, 0.0, 0.0)) setup_light()def setup_light(): # 初始化光照 gamelight = 5.0 - GTIME / 10 glLightfv(GL_LIGHT0, GL_AMBIENT, (GLfloat * 4)(gamelight, gamelight, gamelight, 1.0)) glLightfv(GL_LIGHT0, GL_DIFFUSE, (GLfloat * 4)(gamelight, gamelight, gamelight, 1.0)) glLightfv(GL_LIGHT0, GL_SPECULAR, (GLfloat * 4)(1.0, 1.0, 1.0, 1.0)) glEnable(GL_LIGHTING) glEnable(GL_LIGHT0)def setup(): # 初始化 glClearColor(0.5 - GTIME * 0.01, 0.69 - GTIME * 0.01, 1.0 - GTIME * 0.01, 1) glEnable(GL_CULL_FACE) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) setup_fog()def main(): window = Window(width=800, height=600, caption='Python Minecraft', resizable=True) window.set_exclusive_mouse(True) setup() pyglet.app.run()if __name__ == '__main__': main()
一共800多行代码,是程序的主要文件
settings.py
在这个开源的程序中,有许多设置是我们可以自己更改的,在setting.py中就提供了许多选项:
import mathTICKS_PER_SEC = 120SECTOR_SIZE = 16GTIME = 0 # 当前世界时间GDAY = 0.0005GNIGHT = 0.0015WALKING_SPEED = 5 # 走路速度RUNNING_SPEED = 8 # 跑步速度FLYING_SPEED = 15 # 飞行速度SWIMMING_SPEED = 4GRAVITY = 25.0 # 重力MAX_JUMP_HEIGHT = 1.5 # 最大跳跃速度JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)TERMINAL_VELOCITY = 35 # 终端速度PLAYER_HEIGHT = 2 # 玩家高度WORLDLEN = 64 # 世界长度BASELEN = 8TEXTURE_PATH = 'texture.png' # 纹理文件NRC = []DNRC = []def getlen(x, y): return math.sqrt(x*x+y*y)for x in range(-4,5): for y in range(-4,5): if getlen(x*BASELEN, y*BASELEN) <= 32: NRC.append((x*BASELEN, y*BASELEN))for x in range(-1,2): for y in range(-1,2): DNRC.append((x*64, y*64))
texture.png
这个图片文件是一个纹理文件,包含着游戏中用到的纹理
包含了天空、西瓜、钻石、铁、树叶、雪块、南瓜、TNT、草块、沙块、冰.......
这个程序用到了numba和pyglet两个包
pip insatll numba#numba包:提升运行速度pip install pyglet#pyglet包:3D构建
1.地图种子
众所周知,MC中有地图种子这个东西,不同的种子对应不同的地图,但这个程序中都是一个种子,也就是说,无论你打开几个地图,地形都是一样的,并且遗憾的是,无法保存地图,所以只能用来娱乐一下。
2.游戏控制
W:向前
A:向左
S:向后
D:向右
space:跳跃
Tab:飞行
1-9:切换方块
左键:破坏方块
右键:放置方块
esc:暂时释放鼠标
要获取源码文件,请到链接: https://pan.baidu.com/s/1_5IyIH0qu4mq1SY_uiN6Qw
提取码: 1fwb
来源地址:https://blog.csdn.net/xyx2023/article/details/128925254