项目背景
一个同学开了间影视投资公司,出于对创业人员的仰慕和影视投资行业的好奇,我就跟他寒暄了几句,聊天当中他提及到国庆节有部《攀登者》即将上映,预计票房会大好,因为吴京是这部片的主演。然后我就想,目前吴京在国内演员中位列几何呢?正好之前爬了猫眼电影数据,基于Python数据分析的方式,分析中国演员排名情况。
数据导入
导入之前爬取到的猫眼数据,由于爬取过程不是本文的主要内容,所以简单描述下数据情况:20110101至20191019年在中国上映,并且有用户评分和票房的影片,总共是2923部。
import pandas as pdfrom sklearn.preprocessing import StandardScalerfrom sklearn.cluster import KMeanspd.set_option('display.max_columns', None)pd.set_option('display.max_rows', None)# 加载数据def load_data(): # 加载电影票房 open_filepath = 'D:\pythondata\\3、猫眼电影\\box_result.csv' movie_box = pd.read_csv(open_filepath) movie_box = movie_box[['电影id', '电影名称','首映日期','总票房']].drop_duplicates() # 加载电影信息 open_filepath = 'D:\pythondata\\3、猫眼电影\\maoyan_movie.xlsx' movie_message = pd.read_excel(open_filepath,sheet_name='maoyan_movie') movie_message.columns = ['电影url','电影名称','电影题材','国家','上映时间','用户评分','电影简介','导演/演员/编剧'] movie_message = movie_message[['电影url','电影题材','国家','用户评分','导演/演员/编剧']].copy() movie_message.drop_duplicates(inplace=True) movie_message['电影id'] = movie_message.apply(lambda x:x['电影url'].replace('https://maoyan.com/films/',''),axis=1) movie_message[['电影id']] = movie_message[['电影id']].apply(pd.to_numeric) # 合并电影信息和票房 data = pd.merge(movie_box,movie_message,how='inner',on=['电影id']) return data
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
软考中级精品资料免费领
- 历年真题答案解析
- 备考技巧名师总结
- 高频考点精准押题
- 资料下载
- 历年真题
193.9 KB下载数265
191.63 KB下载数245
143.91 KB下载数1142
183.71 KB下载数642
644.84 KB下载数2755
相关文章
发现更多好内容猜你喜欢
AI推送时光机程序员用 Python 分析中国演员排名,票房最高的是意料之中的他
后端开发2023-06-02
咦!没有更多了?去看看其它编程学习网 内容吧