这篇文章给大家介绍使用Python怎么实现异步爬虫的原理是什么,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
一、背景
默认情况下,用get请求时,会出现阻塞,需要很多时间来等待,对于有很多请求url时,速度就很慢。因为需要一个url请求的完成,才能让下一个url继续访问。一种很自然的想法就是用异步机制来提高爬虫速度。通过构建线程池或者进程池完成异步爬虫,即使用多线程或者多进程来处理多个请求(在别的进程或者线程阻塞时)。
import time #串形 def getPage(url): print("开始爬取网站",url) time.sleep(2)#阻塞 print("爬取完成!!!",url) urls = ['url1','url2','url3','url4','url5'] beginTime = time.time()#开始计时 for url in urls: getPage(url) endTime= time.time()#结束计时print("完成时间%d"%(endTime - beginTime))
下面通过模拟爬取网站来完成对多线程,多进程,协程的理解。
二、多线程实现
import time #使用线程池对象from multiprocessing.dummy import Pool def getPage(url): print("开始爬取网站",url) time.sleep(2)#阻塞 print("爬取完成!!!",url) urls = ['url1','url2','url3','url4','url5'] beginTime = time.time()#开始计时 #准备开启5个线程,并示例化对象pool = Pool(5)pool.map(getPage, urls)#urls是可迭代对象,里面每个参数都会给getPage方法处理 endTime= time.time()#结束计时print("完成时间%d"%(endTime - beginTime))
完成时间只需要2s!!!!!!!!
线程池使用原则:适合处理耗时并且阻塞的操作
三、协程实现
单线程+异步协程!!!!!!!!!!强烈推荐,目前流行的方式。
相关概念:
#%%import time #使用协程import asyncio async def getPage(url): #定义了一个协程对象,python中函数也是对象 print("开始爬取网站",url) time.sleep(2)#阻塞 print("爬取完成!!!",url) #async修饰的函数返回的对象 c = getPage(11) #创建事件对象loop_event = asyncio.get_event_loop()#注册并启动looPloop_event.run_until_complete(c) #task对象使用,封装协程对象c'''loop_event = asyncio.get_event_loop()task = loop_event.create_task(c)loop_event.run_until_complete(task)''' #Future对象使用,封装协程对象c 用法和task差不多'''loop_event = asyncio.get_event_loop()task = asyncio.ensure_future(c)loop_event.run_until_complete(task)''' #绑定回调使用 async def getPage2(url): #定义了一个协程对象,python中函数也是对象 print("开始爬取网站",url) time.sleep(2)#阻塞 print("爬取完成!!!",url) return url #async修饰的函数返回的对象 c2 = getPage2(2) def callback_func(task): print(task.result()) #task.result()返回任务对象中封装的协程对象对应函数的返回值 #绑定回调loop_event = asyncio.get_event_loop()task = asyncio.ensure_future(c2) task.add_done_callback(callback_func) #真正绑定,loop_event.run_until_complete(task)
输出:
四、多任务协程实现
import time #使用多任务协程import asyncio urls = ['url1','url2','url3','url4','url5'] async def getPage(url): #定义了一个协程对象,python中函数也是对象 print("开始爬取网站",url) #在异步协程中如果出现同步模块相关的代码,那么无法实现异步 #time.sleep(2)#阻塞 await asyncio.sleep(2)#遇到阻塞操作必须手动挂起 print("爬取完成!!!",url) return url beginTime = time.time() #任务列表,有多个任务tasks = [] for url in urls: c = getPage(url) task = asyncio.ensure_future(c)#创建任务对象 tasks.append(task)loop = asyncio.get_event_loop()loop.run_until_complete(asyncio.wait(tasks))#不能直接放task,需要封装进入asyncio,wait()方法中 endTime = time.time() print("完成时间%d"%(endTime - beginTime))
此时不能用time.sleep(2),用了还是10秒
对于真正爬取过程中,如在getPage()方法中真正爬取数据时,即requests.get(url) ,它是基于同步方式实现。应该使用异步网络请求模块aiohttp
参考下面代码:
async def getPage(url): #定义了一个协程对象,python中函数也是对象 print("开始爬取网站",url) #在异步协程中如果出现同步模块相关的代码,那么无法实现异步 #requests.get(url)#阻塞 async with aiohttp.ClintSession() as session: async with await session.get(url) as response: #手动挂起 page_text = await response.text() #.text()返回字符串,read()返回二进制数据,注意不是content print("爬取完成!!!",url) return page_text
python可以做什么
Python是一种编程语言,内置了许多有效的工具,Python几乎无所不能,该语言通俗易懂、容易入门、功能强大,在许多领域中都有广泛的应用,例如最热门的大数据分析,人工智能,Web开发等。
关于使用Python怎么实现异步爬虫的原理是什么就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。