这期内容当中小编将会给大家带来有关使用python怎么提取html文本,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
# coding: utf-8from time import timeimport warcfrom bs4 import BeautifulSoupfrom selectolax.parser import HTMLParserdef get_text_bs(html): tree = BeautifulSoup(html, 'lxml') body = tree.body if body is None: return None for tag in body.select('script'): tag.decompose() for tag in body.select('style'): tag.decompose() text = body.get_text(separator='\n') return textdef get_text_selectolax(html): tree = HTMLParser(html) if tree.body is None: return None for tag in tree.css('script'): tag.decompose() for tag in tree.css('style'): tag.decompose() text = tree.body.text(separator='\n') return textdef read_doc(record, parser=get_text_selectolax): url = record.url text = None if url: payload = record.payload.read() header, html = payload.split(b'\r\n\r\n', maxsplit=1) html = html.strip() if len(html) > 0: text = parser(html) return url, textdef process_warc(file_name, parser, limit=10000): warc_file = warc.open(file_name, 'rb') t0 = time() n_documents = 0 for i, record in enumerate(warc_file): url, doc = read_doc(record, parser) if not doc or not url: continue n_documents += 1 if i > limit: break warc_file.close() print('Parser: %s' % parser.__name__) print('Parsing took %s seconds and produced %s documents\n' % (time() - t0, n_documents))
>>> ! wget https://commoncrawl.s3.amazonaws.com/crawl-data/CC-MAIN-2018-05/segments/1516084886237.6/warc/CC-MAIN-20180116070444-20180116090444-00000.warc.gz>>> file_name = "CC-MAIN-20180116070444-20180116090444-00000.warc.gz">>> process_warc(file_name, get_text_selectolax, 10000)Parser: get_text_selectolaxParsing took 16.170367002487183 seconds and produced 3317 documents>>> process_warc(file_name, get_text_bs, 10000)Parser: get_text_bsParsing took 432.6902508735657 seconds and produced 3283 documents
显然,这并不是对某些事物进行基准测试的最佳方法,但是它提供了一个想法,即selectolax有时比lxml快30倍。
selectolax最适合将HTML剥离为纯文本。如果我有10,000多个HTML片段,需要将它们作为纯文本索引到Elasticsearch中。(Elasticsearch有一个html_strip文本过滤器,但这不是我想要/不需要在此上下文中使用的过滤器)。事实证明,以这种规模将HTML剥离为纯文本实际上是非常低效的。那么,最有效的方法是什么?
PyQuery
from pyquery import PyQuery as pqtext = pq(html).text()
selectolax
from selectolax.parser import HTMLParsertext = HTMLParser(html).text()
正则表达式
import reregex = re.compile(r'<.*?>')text = clean_regex.sub('', html)
结果
我编写了一个脚本来计算时间,该脚本遍历包含HTML片段的10,000个文件。注意!这些片段不是完整的<html>文档(带有<head>和<body>等),只是HTML的一小部分。平均大小为10,314字节(中位数为5138字节)。结果如下:
pyquery SUM: 18.61 seconds MEAN: 1.8633 ms MEDIAN: 1.0554 msselectolax SUM: 3.08 seconds MEAN: 0.3149 ms MEDIAN: 0.1621 msregex SUM: 1.64 seconds MEAN: 0.1613 ms MEDIAN: 0.0881 ms
我已经运行了很多次,结果非常稳定。重点是:selectolax比PyQuery快7倍。
正则表达式好用?真的吗?
对于最基本的HTML Blob,它可能工作得很好。实际上,如果HTML是<p> Foo&amp; Bar </ p>,我希望纯文本转换应该是Foo&Bar,而不是Foo&amp; bar。
更重要的一点是,PyQuery和selectolax支持非常特定但对我的用例很重要的内容。在继续之前,我需要删除某些标签(及其内容)。例如:
<h5 class="warning">This should get stripped.</h5><p>Please keep.</p><div >This should also get stripped.</div>
正则表达式永远无法做到这一点。
2.0 版本
因此,我的要求可能会发生变化,但基本上,我想删除某些标签。例如:<div class =“ warning”> 、 <div class =“ hidden”> 和 <div style =“ display:none”>。因此,让我们实现一下:
PyQuery
from pyquery import PyQuery as pq_display_none_regex = re.compile(r'display:\s*none')doc = pq(html)doc.remove('div.warning, div.hidden')for div in doc('div[style]').items(): style_value = div.attr('style') if _display_none_regex.search(style_value): div.remove()text = doc.text()
selectolax
from selectolax.parser import HTMLParser_display_none_regex = re.compile(r'display:\s*none')tree = HTMLParser(html)for tag in tree.css('div.warning, div.hidden'): tag.decompose()for tag in tree.css('div[style]'): style_value = tag.attributes['style'] if style_value and _display_none_regex.search(style_value): tag.decompose()text = tree.body.text()
这实际上有效。当我现在为10,000个片段运行相同的基准时,新结果如下:
pyquery SUM: 21.70 seconds MEAN: 2.1701 ms MEDIAN: 1.3989 msselectolax SUM: 3.59 seconds MEAN: 0.3589 ms MEDIAN: 0.2184 msregex Skip
上述就是小编为大家分享的使用python怎么提取html文本了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注编程网行业资讯频道。