需要全部代码请点赞关注收藏后评论区留言私信~~~
与Android自带的人脸检测器相比,OpenCV具备更强劲的人脸识别功能,它可以通过摄像头实时检测人脸,实时检测的预览空间是JavaCameraView 常用方法说明如下
setCvCameraViewListener:设置OpenCV的相机视图监听器。监听器需要写下列三个状态变更方法:
onCameraViewStarted:相机视图开始预览时回调。
onCameraViewStopped:相机视图停止预览时回调。
onCameraFrame:相机视图预览变更时回调。
enableView:启用OpenCV的相机视图。
disableView:禁用OpenCV的相机视图。
接下来把JavaCameraView加入App工程,走一遍它的详细使用过程,首先修改AndroidManifest.xml补充一行相机权限配置
实时检测人脸有如下四个步骤
(1)从布局文件中获得相机视图对象后,调用它的setCvCameraViewListener方法,设置OpenCV的相机视图监听器。
(2)OpenCV初始化与资源加载完成后,调用enableView方法开启相机视图。
(3)活动类由继承AppCompatActivity改为继承CameraActivity类,并重写getCameraViewList方法,返回相机视图的单例列表。
(4)第一步重写监听器接口的onCameraFrame方法时,补充人脸识别等处理逻辑,也就是先检测人脸,再给人脸标上相框。
运行测试App 会自动打开手机摄像机 然后检测摄像机内的人脸
由顶部状态栏可以看到打开了相机功能 此处用了博主小时候的照片~~~
部分代码如下 需要全部源码请点赞关注收藏后评论区留言~~~
package com.example.face;import android.content.Context;import android.os.Bundle;import android.os.Environment;import android.util.Log;import android.widget.TextView;import com.example.face.util.DateUtil;import org.opencv.android.CameraActivity;import org.opencv.android.BaseLoaderCallback;import org.opencv.android.CameraBridgeViewBase;import org.opencv.android.LoaderCallbackInterface;import org.opencv.android.OpenCVLoader;import org.opencv.core.Core;import org.opencv.core.Mat;import org.opencv.core.MatOfRect;import org.opencv.core.Rect;import org.opencv.core.Scalar;import org.opencv.core.Size;import org.opencv.imgcodecs.Imgcodecs;import org.opencv.imgproc.Imgproc;import org.opencv.objdetect.CascadeClassifier;import java.io.File;import java.io.FileOutputStream;import java.io.InputStream;import java.util.Collections;import java.util.List;//OpenCV的实时扫描页面必须继承CameraActivitypublic class DetectRealtimeActivity extends CameraActivity implements CameraBridgeViewBase.CvCameraViewListener2 { private static final String TAG = "DetectRealtimeActivity"; private static final Scalar FACE_RECT_COLOR = new Scalar(0, 255, 0, 255); private Mat mRgba, mGray; // 全彩矩阵,灰度矩阵 private CascadeClassifier mJavaDetector; // OpenCV的人脸检测器 private int mAbsoluteFaceSize = 0; // 绝对人脸大小 // OpenCV默认横屏扫描,需要旋转90度改成竖屏预览,详细改动见CameraBridgeViewBase.java的deliverAndDrawFrame方法 private CameraBridgeViewBase jcv_detect; // 声明一个OpenCV的相机视图对象 @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_detect_realtime); findViewById(R.id.iv_back).setOnClickListener(v -> finish()); TextView tv_title = findViewById(R.id.tv_title); tv_title.setText("实时检测人脸"); jcv_detect = findViewById(R.id.jcv_detect); jcv_detect.setVisibility(CameraBridgeViewBase.VISIBLE); jcv_detect.setCvCameraViewListener(this); // 设置OpenCV的相机视图监听器 } @Override public void onPause() { super.onPause(); if (jcv_detect != null) { jcv_detect.disableView(); // 禁用OpenCV的相机视图 } } @Override public void onResume() { super.onResume(); if (!OpenCVLoader.initDebug()) { Log.d(TAG, "Internal OpenCV library not found. Using OpenCV Manager for initialization"); OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_3_0_0, this, mLoaderCallback); } else { Log.d(TAG, "OpenCV library found inside package. Using it!"); mLoaderCallback.onManagerConnected(LoaderCallbackInterface.SUCCESS); } } @Override protected List extends CameraBridgeViewBase> getCameraViewList() { return Collections.singletonList(jcv_detect); } @Override public void onDestroy() { super.onDestroy(); jcv_detect.disableView(); // 禁用OpenCV的相机视图 } @Override public void onCameraViewStarted(int width, int height) { mGray = new Mat(); mRgba = new Mat(); } @Override public void onCameraViewStopped() { mGray.release(); mRgba.release(); } // 相机预览回调 @Override public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) { mRgba = inputFrame.rgba(); mGray = inputFrame.gray(); Core.rotate(mRgba, mRgba, Core.ROTATE_90_CLOCKWISE); // 适配竖屏,顺时针旋转90度 Core.rotate(mGray, mGray, Core.ROTATE_90_CLOCKWISE); // 适配竖屏,顺时针旋转90度 if (mAbsoluteFaceSize == 0) { Log.d(TAG, "width="+mGray.width()+", height="+mGray.height()+", cols="+mGray.cols()+", rows="+mGray.rows()); int height = mGray.rows(); if (Math.round(height * 0.2f) > 0) { mAbsoluteFaceSize = Math.round(height * 0.2f); }// String filePath = String.format("%s/%s.jpg",// getExternalFilesDir(Environment.DIRECTORY_DOWNLOADS).toString(),// DateUtil.getNowDateTime());// Imgcodecs.imwrite(filePath, mRgba);// Log.d(TAG, "filePath="+filePath); } MatOfRect faces = new MatOfRect(); if (mJavaDetector != null) { // 检测器开始识别人脸 mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2, new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size()); } Rect[] faceArray = faces.toArray(); for (Rect rect : faceArray) { // 给找到的人脸标上相框 Imgproc.rectangle(mRgba, rect.tl(), rect.br(), FACE_RECT_COLOR, 3); Log.d(TAG, rect.toString()); } Core.rotate(mRgba, mRgba, Core.ROTATE_90_COUNTERCLOCKWISE); // 恢复原状,逆时针旋转90度 return mRgba; } private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) { @Override public void onManagerConnected(int status) { if (status == LoaderCallbackInterface.SUCCESS) { Log.d(TAG, "OpenCV loaded successfully"); // 在OpenCV初始化完成后加载so库 System.loadLibrary("detection_based_tracker"); File cascadeDir = getDir("cascade", Context.MODE_PRIVATE); File cascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml"); // 从应用程序资源加载级联文件 try (InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface); FileOutputStream os = new FileOutputStream(cascadeFile)) { byte[] buffer = new byte[4096]; int bytesRead; while ((bytesRead = is.read(buffer)) != -1) { os.write(buffer, 0, bytesRead); } } catch (Exception e) { e.printStackTrace(); } // 根据级联文件创建OpenCV的人脸检测器 mJavaDetector = new CascadeClassifier(cascadeFile.getAbsolutePath()); if (mJavaDetector.empty()) { Log.d(TAG, "Failed to load cascade classifier"); mJavaDetector = null; } else { Log.d(TAG, "Loaded cascade classifier from " + cascadeFile.getAbsolutePath()); } cascadeDir.delete(); jcv_detect.enableView(); // 启用OpenCV的相机视图 } else { super.onManagerConnected(status); } } };}
创作不易 觉得有帮助请点赞关注收藏~~~
来源地址:https://blog.csdn.net/jiebaoshayebuhui/article/details/128157645