无线电接入网络中的层次结构
到目前为止,基本原理已经很好地理解。从数十亿或数万亿的边缘设备中传输zettabytes的数据到云端是不可能的——因为在功率和带宽方面太过昂贵。所以我们开始把计算移到更靠近边缘的地方。这样,本地处理更多的数据,只需要较短的跳跃。Ron引用了Rutgers/Inria在增强现实(AR)应用中使用微软HoloLens的一项研究。它的任务是进行二维码识别、场景分割、定位和绘制地图。在每种情况下,HoloLens首先连接到边缘服务器。在一个实验中,人工智能功能被转移到云服务器上。在第二个实验中,在边缘服务器上执行这些操作。第一种情况下的总往返延迟为80-100ms或更多。在第二种情况下,只有2-10ms。
这并不奇怪,但其中的含义很重要。云延迟很容易引起AR用户的晕动病。在其他应用中,这可能是一个安全问题。边缘计算的往返延迟问题要小得多。Ron补充说,5G提供的用例可以将延迟降低到1ms以下。使基于边缘的计算没有竞争的理由。对于延迟不敏感的应用程序来说,使用云是可以的(只要你不介意传输过程中的成本开销和隐私问题。)对于任何实时应用程序,计算和人工智能必须靠近应用程序。
从云到边缘的架构
Ron接着谈到了边缘计算的三种不同架构。他把边缘看作是云以外的任何东西,它利用了来自多个来源的使用模型和架构。最上面的是区域性数据中心,更多的是本地数据中心(可能在工厂或农场),以及聚合/网关。每个都具有自己的性能和功率配置文件。
而区域数据中心是缩小了的云,具有相同的功能,但的容量和功率需求较低。对于本地服务器,他举了一个Chick-Fil-A的例子,他们在快餐店有这样的服务器,来收集和处理数据,以优化当地厨房的运营。
不过快餐店里的聚合器/网关的功能相当有限。在这个架构中,有一些更高层次的步骤;这种层次结构进一步发展,一直延伸到边缘设备,甚至是电池驱动设备。据了解,在遥控器中,语音激活和触发单词识别是在遥控器内部进行。而且网关可能会做一些更繁重的工作(例如命令识别)。
最后,他讨论了对SoC架构的影响,以及进入服务器SoCs和AI加速器的IP。本人同意他的观点,即x86向量神经网络扩展可能不会产生太大影响。毕竟,英特尔开发Nervana(现在是Habana)是有原因的。更普遍的是,AI加速器架构正在爆炸。支持垂直应用,从极限边缘到5G基础设施再到云。AI正在每一种形式的边缘和非边缘计算在寻找它的位置。