文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

作业帮基于 Apache Doris(Incubating) 的数仓实践

2019-04-01 14:23

关注

作业帮基于 Apache Doris(Incubating) 的数仓实践

【本文经作者授权转载,原则作者 糜利敏,联系方式见文章末尾】

关于 Apache Doris(Incubating)

Apache Doris(Incubating) 一款基于大规模并行处理技术的交互式SQL分析数据库,由百度于2018年贡献给 Apache 基金会,目前在 Apache 基金会孵化器中。

Github: https://github.com/apache/incubator-doris,欢迎大家 Star、提 Issue、Pull Request。

官方网站:http://doris.incubator.apache.org/  可以查看更多安装、部署、使用文档,也欢迎对文档内容进行校对或建议。

开发者邮件列表:dev@doris.apache.org,(如何订阅请戳这里)

背景

作业帮大数据团队主要负责建设公司级数仓,向各个产品线提供面向业务的数据信息,如到课时长、答题情况等,服务于拉新、教学、BI等多个重要业务线。在过去数月内,我们通过对Doris的应用实践,构建了数仓实时查询系统。本文总结并分享下期间的工作内容,也欢迎大家一起讨论。

典型的数仓从逻辑上划分为:

大数据团队主要负责到ODS-DWS的建设,从DWSADS一般是数仓系统和业务线系统的边界。

在过去,由于缺失统一的查询系统,探索了很多模式来支持各个业务线发展。

 

这些烟囱式的系统构建方式,导致系统越来越难以维护,且业务接入效率也逐步降低。

因此,统一整个查询引擎,对于数仓建设在提高业务支持效率、降低维护成本上都具有非常重大的意义。

总体方案

经过过去数月的探索与实践,我们确立了以Doris为基础的数仓实时查询系统。同时也对整个数仓的数据计算系统做了一次大的重构,最终整体的架构图如下:

如图所示(从下到上),原始业务层日志经数据摄入系统进入数仓,在数据清洗计算层,我们将原来的Spark系统升级到了Flink,并且基于Flink-Sql提供了统一数据开发框架,从原有的代码开发升级到Sql开发来极大的提升数据的研发效率。

其后查询系统将Kafka的数据实时同步到查询引擎内,并通过OpenAPI的统一接口对外提供查询服务。

接下来,重点讲下查询系统的工作。

查询引擎选型

实时查询系统的核心在于确定查询引擎。

社区的查询引擎较多,如ImpalaPrestoDorisESxpack),以及云上的ADB等。这块考虑到调研成本、团队技术生态、维护成本等多种因素,我们最后选择了Doris 作为我们的查询引擎。

在性能调研时,我们也走了一些弯路:第一次使用Doris来做查询引擎,发现使用我们的业务Sql,延迟数据比较大,且CPU使用率很高(IDLE < 10%),

原因在于使用了AGGREGATE模型,如对于订单数据,一般会将用户支付金额等作为指标列(如一个用户从订单预订到支付,状态的改变会修改支付金额值),但是业务端的Sql中有大量的基于支付金额(指标列)的筛选查询,如统计支付金额 > 某个值的用户数。

Doris对于指标列的筛选成本较高,底层采用了类LSM-Tree的结构,因此为了确定某一行的数据是否该被筛选,需要扫描所有底层文件内包含该行的数据,进而聚合计算后才可以决策是否结果集包含该行(UNIQ模型类似)。而DUPLICATE表无法更新列。

最终使用Doris on ES,主要考虑点

当然,对于流量分析的场景,由于指标列一般是pvuv等,业务上并没有对指标的筛选过滤需求,且Doris自身支持RollUP,因此非常适合流量类的查询分析。

因此,通过Doris我们统一了整个查询引擎端的实现,这样对于后续整个数仓的进一步建设就打下了非常重要的基础。

应用实践

基于业务场景,我们对需求进行了分类:面向业务工作台的非流量类需求以及流量分析类需求。

非流量

在实际的应用中,业务侧的需求主要分两类:

这些需求在前端查询,均需要保障低延迟。

而明细查询对于数据的时效性要求更高,因此对于明细类查询,业务侧会直接访问Doris on ES中的数据进行查询,这样基于Doris on ES的任意列检索能力可以保障业务查询模式的灵活性以及数据的时鲜性。

而对于聚合查询,由于不同指标的Sql计算的数据范围不同,且业务侧对于聚合的计算没有明细查询的时效性,因此,我们通过微批(如1min5mins10mins……)的调度能力定期计算聚合指标,并存放到ADS层的业务数据库中供前端平台查询。

为了提高数据使用效率,方便业务侧获得特定时间窗口的数据,在数据模型上,我们统一设置了Meta字段如数据更新时间,这样业务可以用来划分每次更新的数据窗口,做增量计算。

这个模式的主要好处

流量

对于流量,在数据清洗后,直接基于kafkaDoris即可,这块主要是利用Doris RollUp的能力,提供低延迟的数据查询能力

OneService

虽然上述可以初步满足业务的需求,但是从站在最终系统可持续运维的目标态来看,还有很多潜在的问题需要提供解决的空间

上述的这些问题虽然短期内无法一一解决,但是需要提供一个能力:将来解决时控制成本,尽量做到对业务无感知。

这些都需要进一步定义出系统的接口边界,否则耦合各个系统,后续使用的用户越多,问题持续时间越久、迁移成本也越高。

因此我们设计了OneModel来统一数据模型,并且构建了OpenAPI来统一服务接口。

目前完成的功能包括

基于上述的设计,一方面支持业务功能的同时,更重要的是切分了整个系统的接口,来降低各个系统的耦合。有几点具体的好处:

应用表现

基于Doris on ES的查询系统上线数月,一直到经历了运营大促的活动,均表现出了非常好的稳定性。每天百万级次调用,99分位延迟~秒级

我们的人效也得到了了数十倍的提升:从过去一个需求进入查询系统到对外交付数据需要数人周,提升到当前模式的小时级甚至分钟级。

总结与规划

通过引入doris,解决了我们明细&聚合数据查询不统一的问题,奠定了整个数据中台在查询侧的基石,对于后续数仓向数据中台发展的路径起到了非常关键的作用。

规划

更多Doris on ES2020规划,请参见:https://github.com/apache/incubator-doris/issues/3306

在此非常感谢百度Doris团队特别是@wuyunfeng@imay 等同学热情、给力、靠谱的技术支持!!!我们也希望后续一起参与到Doris的开发建设中来!

欢迎来撩!

在线教育属于当前还在持续高速增长的业务赛道,作业帮作为一家专注于K12的在线教育公司,当前已经累计激活用户8亿+,月活1.7亿+

作业帮大数据团队致力于面向公司构建数据中台,这里可以接触到大数据下的分布式计算、存储等多种前沿的工程架构技术,欢迎各位感兴趣的小伙伴来撩~

联系邮箱:milimin@zuoyebang.com

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯