文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何进行Elasticsearch集群运维

2024-04-02 19:55

关注

本篇文章给大家分享的是有关如何进行Elasticsearch集群运维,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

Meltwater每天要处理数百万量级的帖子数据,因此需要一种能处理该量级数据的存储和检索技术。

如何进行Elasticsearch集群运维

从0.11.X 版本开始我们就已经是Elasticsearch的忠实用户了。在经历了一些波折之后,最终我们认为做出了正确的技术选型。

Elasticsearch用于支持我们的主要媒体监控应用,客户通过该应用可以检索和分析媒体数据,比如新闻文章、(公开的)Facebook帖子、Instagram帖子、博客和微博。我们通过使用一个混合API来收集这些内容,并爬取和稍作加工,使得它们可被Elasticsearch检索到。

小编将分享我们所学到的经验、如何调优Elasticsearch,以及要绕过的一些陷阱。

数据量


每天都有数量相当庞大的新闻和微博产生;在高峰期需要索引大约300多万社论文章,和近1亿条社交帖子数据。其中社论数据长期保存以供检索(可回溯到2009年),社交帖子数据保存近15个月的。当前的主分片数据使用了大约200 TB的磁盘空间,副本数据大约600 TB。

我们的业务每分钟有3千次请求。所有的请求通过一个叫做“search-service”的服务,该服务会依次完成所有与Elasticsearch集群的交互。大部分检索规则比较复杂,包括在面板和新闻流中。比如,一个客户可能对Tesla和Elon Musk感兴趣,但希望排除所有关于SpaceX或PayPal的信息。用户可以使用一种与Lucene查询语法类似的灵活语法,如下:

Tesla AND "Elon Musk" NOT (SpaceX OR PayPal)

我们最长的此类查询有60多页。重点是:除了每分钟3千次请求以外,没有一个查询是像在Google里查询“Barack Obama”这么简单的;这简直就是可怕的野兽,但ES节点必须努力找出一个匹配的文档集。

如何进行Elasticsearch集群运维

版本


我们运行的是一个基于Elasticsearch 1.7.6的定制版本。该版本与1.7.6 主干版本的唯一区别是,我们向后移植(backport)了roaring bitsets/bitmaps(http://suo.im/5bE6od) 作为缓存。该功能是从Lucene 5移植到Lucene 4的,对应移植到了ES 1.X版本。Elasticsearch 1.X中使用默认的bitset作为缓存,对于稀疏结果来说开销非常大,不过在Elasticsearch 2.X中已经做了优化。

为何不使用较新版本的Elasticsearch呢?主要原因是升级困难。在主版本间滚动升级只适用于从ES 5到6(从ES 2到5应该也支持滚动升级,但没有试过)。因此,我们只能通过重启整个集群来升级。宕机对我们来说几乎不可接受,但或许可以应对一次重启所带来的大约30-60分钟宕机时间;而真正令人担心的,是一旦发生故障并没有真正的回滚过程。

截止目前我们选择了不升级集群。当然我们希望可以升级,但目前有更为紧迫的任务。实际上该如何实施升级尚未有定论,很可能选择创建另一个新的集群,而不是升级现有的。

节点配置


我们自2017年6月开始在AWS上运行主集群,使用i3.2xlarge实例作为数据节点。之前我们在COLO(Co-located Data Center)里运行集群,但后续迁移到了AWS云,以便在新机器宕机时能赢得时间,使得我们在扩容和缩容时更加弹性。

我们在不同的可用区运行3个候选master节点,并设置discovery.zen.minimum_master_nodes为2。这是避免脑裂问题split-brain problem(https://qbox.io/blog/split-brain-problem-elasticsearch)非常通用的策略。

我们的数据集在存储方面,要求80%容量和3个以上的副本,这使得我们运行了430个数据节点。起初打算使用不同层级的数据,在较慢的磁盘上存储较旧的数据,但是由于我们只有相关的较低量级旧于15个月的数据(只有编辑数据,因为我们丢弃了旧的社交数据),然而这并未奏效。每个月的硬件开销远大于运行在COLO中,但是云服务支持扩容集群到2倍,而几乎不用花费多少时间。

你可能会问,为何选择自己管理维护ES集群。其实我们考虑过托管方案,但最后还是选择自己安装,理由是:AWS Elasticsearch Service(http://suo.im/4PLuXa)暴露给用户的可控性太差了,Elastic Cloud(https://www.elastic.co/cn/cloud)的成本比直接在EC2上运行集群要高2-3倍。

为了在某个可用区宕机时保护我们自身,节点分散于eu-west-1的所有3个可用区。我们使用AWS plugin(http://suo.im/5qFQEP)来完成该项配置。它提供了一个叫做aws_availability_zone的节点属性,我们把cluster.routing.allocation.awareness.attributes
设置为aws_availability_zone。这保证了ES的副本尽可能地存储在不同的可用区,而查询尽可能被路由到相同可用区的节点。

这些实例运行的是Amazon Linux,临时挂载为ext4,有约64GB的内存。我们分配了26GB用于ES节点的堆内存,剩下的用于磁盘缓存。为何是26GB?因为JVM是在一个黑魔法之上构建的(https://www.elastic.co/blog/a-heap-of-trouble)。

我们同时使用Terraform(https://www.terraform.io/)自动扩容组来提供实例,并使用Puppet(https://puppet.com/)完成一切安装配置。

索引结构


因为我们的数据和查询都是基于时间序列的,所以使用了
time-based indexing(http://suo.im/547GbE),
类似于ELK (elasticsearch, logstash, kibana) stack(https://www.elastic.co/elk-stack)。同时也让不同类型的数据保存在不同的索引库中,以便诸如社论文档和社交文档类数据最终位于不同的每日索引库中。这样可以在需要的时候只丢弃社交索引,并增加一些查询优化。每个日索引运行在两个分片中的一个。

该项设置产生了大量的分片(接近40k)。有了这么多的分片和节点,集群操作有时变得更特殊。比如,删除索引似乎成为集群master的能力瓶颈,它需要把集群状态信息推送给所有节点。我们的集群状态数据约100 MB,但通过TCP压缩可减少到3 MB
(可以通过curl localhost:9200/_cluster/state/_all 查看你自己集群的状态数据)。Master节点仍然需要在每次变更时推送1.3 GB数据(430 节点 x 3 MB 状态大小)。除了这1.3 GB数据外,还有约860 MB必须在可用区(比如 最基本的通过公共互联网)之间传输。这会比较耗时,尤其是在删除数百个索引时。我们希望新版本的Elasticsearch能优化这一点,首先从ES 2.0支持仅发送集群状态的差分数据(http://suo.im/547UyM)这一特性开始。

Performance 性能


如前所述,我们的ES集群为了满足客户的检索需求,需要处理一些非常复杂的查询。

为应对查询负载,过去几年我们在性能方面做了大量的工作。我们必须尝试公平分享ES集群的性能测试,从下列引文就可以看出。

不幸的是,当集群宕机的时候,不到三分之一的查询能成功完成。我们相信测试本身导致了集群宕机。 

—— 摘录自使用真实查询在新ES集群平台上的第一次性能测试

为了控制查询执行过程,我们开发了一个插件,实现了一系列自定义查询类型。通过使用这些查询类型来提供Elasticsearch官方版本不支持的功能和性能优化。比如,我们实现了phrases中的wildcard查询,支持在SpanNear查询中执行;另一个优化是支持“*”代替match-all-query;还有其他一系列特性。

Elasticsearch和Lucene的性能高度依赖于具体的查询和数据,没有银弹。即便如此,仍可给出一些从基础到进阶的参考:

如何进行Elasticsearch集群运维

图表说明:响应时间。有/没有 重写Lucene查询执行。同时也表明不再有节点每天多次发生内存不足。

顺便说明下,因为我知道会面临一个问题:从上一次性能测试我们知道通过升级到ES 2.X能小幅提升性能,但是并不能改变什么。话虽如此,但如果你已经从ES 1.X集群迁移到了ES 2.X,我们很乐意听取关于你如何完成迁移的实践经验。

如果读到了这里,说明你对Elasticsearch是真爱啊(或者至少你是真的需要它)。我们很乐意学习你的经验,以及任何可以分享的内容。欢迎在评论区分享你的反馈和问题。

以上就是如何进行Elasticsearch集群运维,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯