文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何将pytorch模型部署到安卓上的方法示例

2024-04-02 19:55

关注

这篇文章演示如何将训练好的pytorch模型部署到安卓设备上。我也是刚开始学安卓,代码写的简单。

环境:

pytorch版本:1.10.0

模型转化

pytorch_android支持的模型是.pt模型,我们训练出来的模型是.pth。所以需要转化才可以用。先看官网上给的转化方式:

import torch
import torchvision
from torch.utils.mobile_optimizer import optimize_for_mobile

model = torchvision.models.mobilenet_v3_small(pretrained=True)
model.eval()
example = torch.rand(1, 3, 224, 224)
traced_script_module = torch.jit.trace(model, example)
optimized_traced_model = optimize_for_mobile(traced_script_module)
optimized_traced_model._save_for_lite_interpreter("app/src/main/assets/model.ptl")

这个模型在安卓对应的包:

repositories {
    jcenter()
}

dependencies {
    implementation 'org.pytorch:pytorch_android_lite:1.9.0'
    implementation 'org.pytorch:pytorch_android_torchvision:1.9.0'
}

注:pytorch_android_lite版本和转化模型用的版本要一致,不一致就会报各种错误。

目前用这种方法有点问题,我采用的另一种方法。

转化代码如下:

import torch
import torch.utils.data.distributed

# pytorch环境中
model_pth = 'model_31_0.96.pth' #模型的参数文件
mobile_pt ='model.pt' # 将模型保存为Android可以调用的文件

model = torch.load(model_pth)
model.eval() # 模型设为评估模式
device = torch.device('cpu')
model.to(device)
# 1张3通道224*224的图片
input_tensor = torch.rand(1, 3, 224, 224) # 设定输入数据格式

mobile = torch.jit.trace(model, input_tensor) # 模型转化
mobile.save(mobile_pt) # 保存文件

对应的包:

//pytorch
implementation 'org.pytorch:pytorch_android:1.10.0'
implementation 'org.pytorch:pytorch_android_torchvision:1.10.0'

定义模型文件和转化后的文件路径。

load模型。这里要注意,如果保存模型

torch.save(model,'models.pth')

加载模型则是

model=torch.load('models.pth')

如果保存模型是

torch.save(model.state_dict(),"models.pth")

加载模型则是

model.load_state_dict(torch.load('models.pth'))

定义输入数据格式。

模型转化,然后再保存模型。

安卓部署

新建项目

新建安卓项目,选择Empy Activity,然后选择Next

image-20220210142047786

然后,填写项目信息,选择安卓版本,我用的4.4,点击完成

image-20220210142213719

导入包

导入pytorch_android的包

//pytorch
implementation 'org.pytorch:pytorch_android:1.10.0'
implementation 'org.pytorch:pytorch_android_torchvision:1.10.0'

image-20220210142327206

如果有参数报错请参照我的完整的配置,代码如下:

plugins {
    id 'com.android.application'
}

android {
    compileSdk 32

    defaultConfig {
        applicationId "com.example.myapplication"
        minSdk 21
        targetSdk 32
        versionCode 1
        versionName "1.0"

        testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
    }

    buildTypes {
        release {
            minifyEnabled false
            proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
        }
    }
    compileOptions {
        sourceCompatibility JavaVersion.VERSION_1_8
        targetCompatibility JavaVersion.VERSION_1_8
    }
}

dependencies {

    implementation 'androidx.appcompat:appcompat:1.3.0'
    implementation 'com.google.android.material:material:1.4.0'
    implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
    testImplementation 'junit:junit:4.13.2'
    androidTestImplementation 'androidx.test.ext:junit:1.1.3'
    androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
    //pytorch
    implementation 'org.pytorch:pytorch_android:1.10.0'
    implementation 'org.pytorch:pytorch_android_torchvision:1.10.0'

}

页面文件

页面的配置如下:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:tools="http://schemas.android.com/tools"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    tools:context=".MainActivity">

    <ImageView
        android:id="@+id/image"
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        android:scaleType="fitCenter" />

    <TextView
        android:id="@+id/text"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:layout_gravity="top"
        android:textSize="24sp"
        android:background="#80000000"
        android:textColor="@android:color/holo_red_light" />

</FrameLayout>

这个页面只有两个空间,一个展示图片,一个显示文字。

image-20220210142827091

模型推理

新增assets文件夹,然后将转化的模型和待测试的图片放进去。

image-20220210143351535

新增ImageNetClasses类,这个类存放类别名字。

image-20220210143105326

代码如下:

package com.example.myapplication;

public class ImageNetClasses {
    public static String[] IMAGENET_CLASSES = new String[]{
            "Black-grass",
            "Charlock",
            "Cleavers",
            "Common Chickweed",
            "Common wheat",
            "Fat Hen",
            "Loose Silky-bent",
            "Maize",
            "Scentless Mayweed",
            "Shepherds Purse",
            "Small-flowered Cranesbill",
            "Sugar beet",

    };
}

在MainActivity类中,增加模型推理的逻辑。完成代码如下:

package com.example.myapplication;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.util.Log;
import android.widget.ImageView;
import android.widget.TextView;

import org.pytorch.IValue;

import org.pytorch.Module;
import org.pytorch.Tensor;
import org.pytorch.torchvision.TensorImageUtils;
import org.pytorch.MemoryFormat;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        Bitmap bitmap = null;
        Module module = null;
        try {
            // creating bitmap from packaged into app android asset 'image.jpg',
            // app/src/main/assets/image.jpg
            bitmap = BitmapFactory.decodeStream(getAssets().open("1.png"));
            // loading serialized torchscript module from packaged into app android asset model.pt,
            // app/src/model/assets/model.pt
            module = Module.load(assetFilePath(this, "models.pt"));
        } catch (IOException e) {
            Log.e("PytorchHelloWorld", "Error reading assets", e);
            finish();
        }

        // showing image on UI
        ImageView imageView = findViewById(R.id.image);
        imageView.setImageBitmap(bitmap);

        // preparing input tensor
        final Tensor inputTensor = TensorImageUtils.bitmapToFloat32Tensor(bitmap,
                TensorImageUtils.TORCHVISION_NORM_MEAN_RGB, TensorImageUtils.TORCHVISION_NORM_STD_RGB, MemoryFormat.CHANNELS_LAST);

        // running the model
        final Tensor outputTensor = module.forward(IValue.from(inputTensor)).toTensor();

        // getting tensor content as java array of floats
        final float[] scores = outputTensor.getDataAsFloatArray();

        // searching for the index with maximum score
        float maxScore = -Float.MAX_VALUE;
        int maxScoreIdx = -1;
        for (int i = 0; i < scores.length; i++) {
            if (scores[i] > maxScore) {
                maxScore = scores[i];
                maxScoreIdx = i;
            }
        }
        System.out.println(maxScoreIdx);
        String className = ImageNetClasses.IMAGENET_CLASSES[maxScoreIdx];

        // showing className on UI
        TextView textView = findViewById(R.id.text);
        textView.setText(className);
    }

    
    public static String assetFilePath(Context context, String assetName) throws IOException {
        File file = new File(context.getFilesDir(), assetName);
        if (file.exists() && file.length() > 0) {
            return file.getAbsolutePath();
        }

        try (InputStream is = context.getAssets().open(assetName)) {
            try (OutputStream os = new FileOutputStream(file)) {
                byte[] buffer = new byte[4 * 1024];
                int read;
                while ((read = is.read(buffer)) != -1) {
                    os.write(buffer, 0, read);
                }
                os.flush();
            }
            return file.getAbsolutePath();
        }
    }
}

然后运行。

image-20220210143529635

 到此这篇关于如何将pytorch模型部署到安卓上的方法示例的文章就介绍到这了,更多相关pytorch模型部署到安卓内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯