经过前三个教程,我们可以知道了OpenCV的基本使用了。
今天,我们就要讲OpenCV中认出,这是一个人脸是怎么做的。
MatOfRect.detectMultiScale函数
OpenCV用的是detectMultiScale来认出这是一个脸的。记得,这只是认出这是一个脸,而不是这个脸是谁。
这个脸是谁我们会逐步展开,前面勿求夯实基础。
detectMultiScale需要两个参数(Mat src, MatOfRect objDetections);
- 第一个函数,是传入的图片,带有人脸的图片;
- 第二个函数,是把所有的这个图片里的人脸得到并输出到MatOfRect对象里;
比如说下面这个图片里,一共有5个脸,我们把脸一个个识别出来并在脸上用方框把它们标记出来。
然后用我们前面教程中提到的ImageViewer类来显示带有“标识”的人脸。
实现代码
ImageViewer.java
再上一遍
package org.mk.opencv;
import org.mk.opencv.util.OpenCVUtil;
import org.opencv.core.Mat;
import javax.swing.*;
import java.awt.*;
public class ImageViewer {
private JLabel imageView;
private Mat image;
private String windowName;
private JFrame frame = null;
public ImageViewer() {
frame = createJFrame(windowName, 800, 600);
}
public ImageViewer(Mat image) {
this.image = image;
}
public ImageViewer(Mat image, String windowName) {
frame = createJFrame(windowName, 1024, 768);
this.image = image;
this.windowName = windowName;
}
public void setTitle(String windowName) {
this.windowName = windowName;
}
public void setImage(Mat image) {
this.image = image;
}
public void imshow() {
setSystemLookAndFeel();
frame.pack();
frame.setLocationRelativeTo(null);
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);// 用户点击窗口关闭
if (image != null) {
Image loadedImage = OpenCVUtil.matToImage(image);
// JFrame frame = createJFrame(windowName, image.width(), image.height());
imageView.setIcon(new ImageIcon(loadedImage));
frame.pack();
// frame.setLocationRelativeTo(null);
// frame.setVisible(true);
// frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);// 用户点击窗口关闭
}
}
private void setSystemLookAndFeel() {
try {
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (ClassNotFoundException e) {
e.printStackTrace();
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (UnsupportedLookAndFeelException e) {
e.printStackTrace();
}
}
private JFrame createJFrame(String windowName, int width, int height) {
JFrame frame = new JFrame(windowName);
imageView = new JLabel();
final JScrollPane imageScrollPane = new JScrollPane(imageView);
imageScrollPane.setPreferredSize(new Dimension(width, height));
frame.add(imageScrollPane, BorderLayout.CENTER);
frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
return frame;
}
}
DetectFace.java
这个是主类。
老三样:
1.加载opencv_java343.dll;
2.加载人脸分拣器;
3.创建Mat对象;
然后我们开始把脸识别出来:
1.使用detectMultiScale把传入的Mat对象中含有脸的那些全部识别出来;
2.识别出来后我们可以使用for (Rect rect : objDetections.toArray())把所有的脸枚举出来;
3.使用Imgproc.rectangle在每个识别出来的脸上用“绿”色把它们一个个框出来;
4.使用ImageViewer的.imgShow显示标识出来的脸;
package org.mk.opencv;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
public class DetectFace {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
//Mat src = Imgcodecs.imread("/Users/chrishu123126.com/opt/img/detect-face-4.jpg");
Mat src = Imgcodecs.imread("D:\\opencv-demo\\green-arrow.jpg");
if (src.empty()) {
System.out.println("图片路径不正确");
return;
}
Mat dst = dobj(src);
ImageViewer imageViewer = new ImageViewer(dst, "识脸");
imageViewer.imshow();
}
private static Mat dobj(Mat src) {
Mat dst = src.clone();
CascadeClassifier objDetector = new CascadeClassifier(
"D:\\opencvinstall\\build\\install\\etc\\lbpcascades\\lbpcascade_frontalface.xml");
MatOfRect objDetections = new MatOfRect();
objDetector.detectMultiScale(dst, objDetections);
if (objDetections.toArray().length <= 0) {
return src;
}
for (Rect rect : objDetections.toArray()) {
Imgproc.rectangle(dst, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.width),
new Scalar(0, 255, 0), 1); //new Scalar(0, 255, 0), 1)绿 //new Scalar(0, 0, 255), 1)红 //new Scalar(255, 0, 0), 1)蓝
}
return dst;
}
}
运行
运行效果如下
把识别出来的脸存成文件
我们现在把识别出来的5张脸存成5个jpg图片。
制作一个写盘函数,很简单。
private static void outputFace(String outputDir, Mat face) {
long millSecs = System.currentTimeMillis();
int temp = (int) (Math.random() * 10000);
StringBuffer outputImgName = new StringBuffer();
outputImgName.append(outputDir).append("/").append(millSecs).append(temp).append(".jpg");
if (face != null) {
Imgcodecs.imwrite(outputImgName.toString(), face);
logger.info(">>>>>>write image into->" + outputDir);
}
}
然后我们在我们的原来的代码中加入这个函数
package org.mk.opencv;
import org.apache.log4j.Logger;
import org.mk.opencv.face.FaceRecogFromFiles;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
public class DetectFace {
private static Logger logger = Logger.getLogger(DetectFace.class);
private final static String faceOutPutDir = "d://opencv-demo/face";
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Mat src =
// Imgcodecs.imread("/Users/chrishu123126.com/opt/img/detect-face-4.jpg");
Mat src = Imgcodecs.imread("D:\\opencv-demo\\green-arrow.jpg");
if (src.empty()) {
System.out.println("图片路径不正确");
return;
}
Mat dst = dobj(src);
ImageViewer imageViewer = new ImageViewer(dst, "识脸");
imageViewer.imshow();
}
private static Mat dobj(Mat src) {
Mat dst = src.clone();
CascadeClassifier objDetector = new CascadeClassifier(
"D:\\opencvinstall\\build\\install\\etc\\lbpcascades\\lbpcascade_frontalface.xml");
MatOfRect objDetections = new MatOfRect();
objDetector.detectMultiScale(dst, objDetections);
if (objDetections.toArray().length <= 0) {
return src;
}
for (Rect rect : objDetections.toArray()) {
Imgproc.rectangle(dst, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.width),
new Scalar(0, 255, 0), 1); // new Scalar(0, 255, 0), 1)绿 //new Scalar(0, 0, 255), 1)红 //new
// Scalar(255, 0, 0), 1)蓝
outputFace(faceOutPutDir, src.submat(rect));
}
return dst;
}
private static void outputFace(String outputDir, Mat face) {
long millSecs = System.currentTimeMillis();
int temp = (int) (Math.random() * 10000);
StringBuffer outputImgName = new StringBuffer();
outputImgName.append(outputDir).append("/").append(millSecs).append(temp).append(".jpg");
if (face != null) {
Imgcodecs.imwrite(outputImgName.toString(), face);
logger.info(">>>>>>write image into->" + outputDir);
}
}
}
运行DetectFace.java,我们可以在D:\opencv-demo\face目录中得到5个写出的人脸的图片。
到此这篇关于Java+OpenCV实现图片中的人脸识别的文章就介绍到这了,更多相关Java OpenCV人脸识别内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!