文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Pandas数据集的分块读取的实现

2024-04-02 19:55

关注

所谓“分块”,顾名思义,就是将数据集分成几块进行读取,比如有105条数据,一次读取10条,读取11次才能全部读完。以下提供两种分块读取的方法,两种方法各有优劣。

一、直接用分块方式读取数据集文件(更直接)

分块读取数据集文件是指用read_xxx()方法读取存储数据的文件时采用分块的方式,这里以.csv文件为例,在read_csv()中加入chunksize参数即可实现分块读取:

reader = pd.read_csv('某招聘网站数据.csv', usecols = ['positionId', 'companyId', 'positionName', 'skillLables'],
                     chunksize=10)

此时,返回的reader不是DataFrame,而是一个可迭代对象(iteration),需要注意的是,这个可迭代对象不能用下标访问。 下面遍历这个对象:

for r in reader:
    print(r)

遍历结果如下图所示:

这种分块读取方式比较直接,但是由于一开始就定义了分块大小,后续处理起来不够灵活。因此提供了第二种读取方法。

二、先将数据集读取为可迭代对象,再分块读取(更灵活)

 这种方法将数据集文件读取为时可迭代对象不定义分块,用分块的方式读取read_csv()方法返回的可迭代对象。实现第一步要在read_csv()方法中指定参数iterator为True:

reader = pd.read_csv('某招聘网站数据.csv', usecols = ['positionId', 'companyId', 'positionName'],
                    iterator=True)

以下是用分块方式遍历reader,注意使用到的get_chunk()方法和里面的参数,参数定义分块大小,可以灵活调节:

while True:
    try:
        print(reader.get_chunk(10))
    except StopIteration:
        break

总结

综上所述,两种方法都能用pandas实现数据的分块读取,对于数据量较大的数据集还是比较实用的。两种方法的优劣体现在直接性和灵活性上,可以根据实际需求自行选择。

到此这篇关于Pandas数据集的分块读取的实现的文章就介绍到这了,更多相关Pandas数据集分块读取内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯