文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C++两种素数判定方法

2022-11-13 14:38

关注

1.什么是素数

素数又称质数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做素数;否则称为合数(规定1既不是素数也不是合数)。

在许多的程序设计题目中,都会涉及到素数的判断,那我们该如何有效判断素数呢?

2.素数的两种判断方法

(1)暴力法

从 2 到 √n

根据素数的定义,我们可以使用逐个试除的方式来判断素数,如果能为要判断的数找到一个除了1和自身以外的因数,那么它就是合数;反之,就是素数。

而这样的因数的范围必然在 2 ~ √n之间,所以我们便可以得到以下代码。

int isPrime(int n)
{
	if(n <= 1)
	{
		return 0;
	}
	for (int i = 2; i * i <= n; i++)
	{
		if (n % i == 0)
		{
			return 0;
		}
	}
	return 1;
}

该函数就可以判断输入的数是否为素数。

这个范围还可以更进一步地缩小。

6n-1与6n+1

数学上有一个定理,除了2和3外,只有形如6n-1和6n+1的自然数可能是素数,这里的n是大于等于1的整数。

如何理解这个定理呢?

所有自然数都可以写成6n,6n+1,6n+2,6n+3,6n+4,6n+5这6种。 那么我们就可以得到下表。

自然数是否可能是素数
6n不可能,为2的倍数
6n+1可能
6n+2不可能,为2的倍数
6n+3不可能,为3的倍数
6n+4不可能,为2的倍数
6n+5可能

其中6n+5可以写作6n-1,所以除了2和3的素数必然形如6n-1或6n+1。

于是我们可以写出如下代码。

int isPrime(int n)
{
	if(n <= 1) return 0;
	else if(n == 2 || n == 3) return 1;
	else if(n % 6 != 1 && n % 6 != 5) return 0;
	for (int i = 5; i * i <= n; i++)
	{
		if (n % i == 0)
		{
			return 0;
		}
	}
	return 1;
}

优化后的算法具有更高的效率。

(2)筛法

暴力算法虽然可以判断某个数是否为素数,但是当它面对大量需要判断的数据时,它的效率会显得十分低下,我们也有更好地方法来求一定范围里的素数,它就是我们的筛法。

筛法,顾名思义,就是将合数从数据中筛除,剩下的自然就都是素数了。

筛法也分为两种,让我们来逐一介绍。

埃氏筛

埃拉托斯特尼 筛法,简称 埃氏筛,是一种由希腊数学家埃拉托斯特尼所提出的一种简单检定素数的算法。

要得到自然数n以内的全部素数,必须把不大于根号n的所有素数的倍数剔除,剩下的就是素数。

下面的程序就是通过埃氏筛判断 0 ~ MAXSIZE-1是否为素数。

#define MAXSIZE 10000
int isPrime[MAXSIZE] = { 0 };
void sieveOfEratosthenes()
{
	for (int i = 2; i < MAXSIZE; i++)
	{
		isPrime[i] = 1;
	}
	for (int i = 2; i * i < MAXSIZE; i++)
	{
		if (isPrime[i])
		{
			for (int j = i * 2; j < MAXSIZE; j += i)
			{
				isPrime[j] = 0;
			}
		}
	}
}

埃氏筛的时间复杂度是O(n*loglogn),效率相较于原来的暴力算法已经有了很大的提高,但它仍然有具有一定的不足。

对于多个素数的公倍数,可能会被多次筛去。

为了解决这个问题,数学家欧拉优化了算法,于是就有了新的筛法。

欧拉筛

欧拉筛法,简称欧拉筛或是欧式筛,又因为其O(n)的时间复杂度而被称为线性筛。

欧拉筛将合数分解为(最小质因数 * 一个合数)的形式,通过最小质因数来判断当前合数是否已经被标记过,与埃氏筛相比,不会对已经被标记过的合数再进行重复标记,故效率更高。

下面的程序就是通过欧拉筛判断 0 ~ MAXSIZE-1是否为素数。

#define MAXSIZE 10000
int isPrime[MAXSIZE] = { 0 };
int prime[MAXSIZE];
int cnt = 0;
void sieveOfEuler()
{
	for (int i = 2; i < MAXSIZE; i++)
	{
		prime[i] = 1;
	}
	for (int i = 2; i * i < MAXSIZE; i++)
	{
		if (isPrime[i])
		{
			prime[++cnt] = i;
		}
		for (int j = 1; i * prime[j] < MAXSIZE; j++)
		{
			isPrime[i * prime[j]] = 0;
			//若i为prime[j]的倍数,终止循环,避免重复筛除
			if (i % prime[j] == 0)
                break;
		}
	}
}

在求一定范围中的所有素数时,欧拉筛具有无可比拟的优势,在程序设计中也经常被采用。

到此这篇关于C++两种素数判定方法的文章就介绍到这了,更多相关C++素数判定内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯