文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C++AVL树4种旋转详讲(左单旋、右单旋、左右双旋、右左双旋)

2022-11-13 19:25

关注

引子:AVL树是因为什么出现的?

二叉搜索树可以缩短查找的效率,如果数据有序接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下时间复杂度:O(N)

两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点左右子树高度之差的绝对值不超过1(对树中的结点进行调整),即为AVl树以他们的名字缩写命名也可以叫高度二叉搜索树

1.AVl树的的特性

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树,它就是AVL树。

如果AVl树有n个结点,其高度可保持在O(logN)搜索时间复杂度O(logN),为什么?

答:左右子树高度之差的绝对值不超过1,那么只有最后一层会差一部分的节点;

2.AVl树的框架

template<class K, class V>
struct AVLtreeNode
{
    //节点构造函数
	AVLtreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
		,_kv(kv)
	{}
    //节点的成员
    //三叉链
	AVLtreeNode<K, V>* _left;
	AVLtreeNode<K, V>* _right;
	AVLtreeNode<K, V>* _parent;
	int _bf;//平衡因子
    //数据使用库里面的pair类存储的kv
	pair<K, V> _kv;
};
template<class K,class V>
class AVLtree
{
	typedef AVLtreeNode<K, V> Node;
public:
    //构造函数
	AVLtree()
		:_root(nullptr)
	{}
    //四种旋转
	void RotateL(Node* parent)
	void RotateR(Node* parent)
	void RotateLR(Node* parent)
	void RotateRL(Node* parent)
    //插入
	bool Insert(const pair<K, V>& kv)
    //寻找
	Node* Find(const K& kv)
private:
	Node* _root;
};

三叉链是什么?

3.AVL树的插入 

bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		Node* parent = _root, *cur = _root;
		while (cur)
		{
			//找nulptr,如果已经有这个key了,二叉搜索树的特性不支持冗余,所以返回失败
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first <kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}
		//
		cur = new Node(kv);
		//判断孩子在父亲的左边还是右边
		if (cur->_kv.first > parent->_kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		while (parent)
		{
			//影响一条路径所有的祖先
			if (parent->_right == cur)
				parent->_bf++;
			else
				parent->_bf--;
			
			if (parent->_bf == 0)
			{
				//左右平衡了不会再影响祖先了
				break;
			}
			if (parent->_bf == 1 || parent->_bf == -1)
			{
				//当前节点所在子树变了,会影响父亲
				// 继续往上更新
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//parent所在子树已经不平衡,需要旋转处理一下
				if (parent->_bf == -2)
				{
					if (cur->_bf == -1)
						// 右单旋
						RotateR(parent);
					else // cur->_bf == 1
						RotateLR(parent);
				}
				else // parent->_bf  == 2
				{
					if (cur->_bf == 1)
						// 左单旋
						RotateL(parent);
					else // cur->_bf == -1
						RotateRL(parent);
				}
				break;
			}
			else
			{
				// 插入节点之前,树已经不平衡了,或者bf出错。需要检查其他逻辑
				assert(false);
			}
		}
		return true;
	}

插入整体逻辑:

  1. 如果还没有元素是一课空树,直接插入即可;如果有元素,按pair的first(key)和比较的节点比较结果为大说明为空的哪个位置在右边,和比较的节点比较的结果小说明为空的哪个位置在左边,如果相等说明已经有这个元素了,二叉搜索树不支持冗余返回一个pair类第一个成员为那个相同元素的map的迭代器和第二个成员为false的pair类迭代器;
  2. 不知道这个已经找到的位置在父节点的左边还是右边,需要判断一下,然后插入元素;
  3. 插入元素的后那么平衡因子将发生变化,为0说明这个父亲节点左右平衡不会影响其他节点,为1或者-1需要向上调整,为2或者-2说明已经不平衡需要旋转;

节点右子树最长路径-左子树最长路径,右边插入节点就+,左边插入节点就-;

3.1四种旋转(左单旋、右单旋、左右双旋、右左双旋)

3.1.1左单旋

void RotateR(Node* parent)
	{
		//轴点的左,孩子节点
		Node* subL = parent->_left;
		//孩子节点的右
		Node* subLR = subL->_right;
		//我的右当你(轴点)的左
		parent->_left = subLR;
		//调整三叉链
		if (subLR)
			subLR->_parent = parent;
		//你(轴点)做我的右
		subL->_right = parent;
		//调整三叉链
		Node* parentParent = parent->_parent;
		parent->_parent = subL;
 
		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			//轴点的父亲新的孩子节点
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;
 
			subL->_parent = parentParent;
		}
 
		subL->_bf = parent->_bf = 0;
	}

3.1.2右单旋

void RotateL(Node* parent)
	{
		//轴点的右,孩子节点
		Node* subR = parent->_right;
		//孩子节点的左
		Node* subRL = subR->_left;
		//我的左当你(轴点)的右
		parent->_right = subRL;
		//调整三叉链
		if (subRL)
		{
			subRL->_parent = parent;
		}
		//你(轴点)做我的左
		subR->_left = parent;
		Node* parentparent = parent->_parent;
 
		parent->_parent = subR;
		if (parent == _root)
		{
			if (parentparent->_left == parent)
				parentparent->_left = subR;
			else
				parentparent->_right = subR;
 
			subR->_parent = parentparent;
		}
		else
		{
			subR->_parent = nullptr;
			_root = subR;
		}
 
		subR->_bf = parent->_bf = 0;
 
	}

 3.1.3左右双旋

void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;
 
		RotateL(parent->_left);
		RotateR(parent);
 
		// ...平衡因子调节还需要具体分析
		if (bf == -1)
		{
			subL->_bf = 0;
			parent->_bf = 1;
			subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

依靠3个被改变节点中最后一个来判断

3.1.4右左双旋 

void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;
 
		RotateR(parent->_right);
		RotateL(parent);
 
		// 平衡因子更新
		if (bf == 1)
		{
			subR->_bf = 0;
			parent->_bf = -1;
			subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

附:AVL的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2(N)

但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:

插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

总结

到此这篇关于C++AVL树4种旋转(左单旋、右单旋、左右双旋、右左双旋)的文章就介绍到这了,更多相关C++AVL树旋转内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯