文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

IDEA 开发配置SparkSQL及简单使用案例代码

2024-04-02 19:55

关注

1.添加依赖

在idea项目的pom.xml中添加依赖。


<!--spark sql依赖,注意版本号-->
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.12</artifactId>
    <version>3.0.0</version>
</dependency>

2.案例代码


package com.zf.bigdata.spark.sql

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object Spark01_SparkSql_Basic {

    def main(args: Array[String]): Unit = {

        //创建上下文环境配置对象
        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSql")
        //创建 SparkSession 对象
        val spark = SparkSession.builder().config(sparkConf).getOrCreate()

        // DataFrame
        val df: DataFrame = spark.read.json("datas/user.json")
        //df.show()

        // DataFrame => Sql

        //df.createOrReplaceTempView("user")
        //spark.sql("select * from user").show()
        //spark.sql("select age from user").show()
        //spark.sql("select avg(age) from user").show()

        //DataFrame => Dsl

        //如果涉及到转换操作,转换需要引入隐式转换规则,否则无法转换,比如使用$提取数据的值
        //spark 不是包名,是上下文环境对象名
        import spark.implicits._
        //df.select("age","username").show()
        //df.select($"age"+1).show()
        //df.select('age+1).show()

        // DataSet

        //val seq = Seq(1,2,3,4)
        //val ds: Dataset[Int] = seq.toDS()
        // ds.show()

        // RDD <=> DataFrame
        val rdd = spark.sparkContext.makeRDD(List((1,"张三",10),(2,"李四",20)))
        val df1: DataFrame = rdd.toDF("id", "name", "age")
        val rdd1: RDD[Row] = df1.rdd

        // DataFrame <=> DataSet
        val ds: Dataset[User] = df1.as[User]
        val df2: DataFrame = ds.toDF()

        // RDD <=> DataSet
        val ds1: Dataset[User] = rdd.map {
            case (id, name, age) => {
                User(id, name = name, age = age)
            }
        }.toDS()
        val rdd2: RDD[User] = ds1.rdd

        spark.stop()
    }
    case class User(id:Int,name:String,age:Int)

}

PS:下面看下在IDEA中开发Spark SQL程序

IDEA 中程序的打包和运行方式都和 SparkCore 类似,Maven 依赖中需要添加新的依赖项:


<dependency>
	<groupId>org.apache.spark</groupId>
	<artifactId>spark-sql_2.11</artifactId>
	<version>2.1.1</version>
</dependency>

一、指定Schema格式


import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.Row

object Demo1 {
  def main(args: Array[String]): Unit = {
    //使用Spark Session 创建表
    val spark = SparkSession.builder().master("local").appName("UnderstandSparkSession").getOrCreate()

    //从指定地址创建RDD
    val personRDD = spark.sparkContext.textFile("D:\\tmp_files\\student.txt").map(_.split("\t"))

    //通过StructType声明Schema
    val schema = StructType(
      List(
        StructField("id", IntegerType),
        StructField("name", StringType),
        StructField("age", IntegerType)))

    //把RDD映射到rowRDD
    val rowRDD = personRDD.map(p=>Row(p(0).toInt,p(1),p(2).toInt))
    val personDF = spark.createDataFrame(rowRDD, schema)

    //注册表
    personDF.createOrReplaceTempView("t_person")

    //执行SQL
    val df = spark.sql("select * from t_person order by age desc limit 4")
    df.show()
    spark.stop()

  }
}

二、使用case class


import org.apache.spark.sql.SparkSession

//使用case class
object Demo2 {

  def main(args: Array[String]): Unit = {
    //创建SparkSession
    val spark = SparkSession.builder().master("local").appName("CaseClassDemo").getOrCreate()

    //从指定的文件中读取数据,生成对应的RDD
    val lineRDD = spark.sparkContext.textFile("D:\\tmp_files\\student.txt").map(_.split("\t"))

    //将RDD和case class 关联
    val studentRDD = lineRDD.map( x => Student(x(0).toInt,x(1),x(2).toInt))

    //生成 DataFrame,通过RDD 生成DF,导入隐式转换
    import spark.sqlContext.implicits._
    val studentDF = studentRDD.toDF

    //注册表 视图
    studentDF.createOrReplaceTempView("student")

    //执行SQL
    spark.sql("select * from student").show()

    spark.stop()
  }
}

//case class 一定放在外面
case class Student(stuID:Int,stuName:String,stuAge:Int)

三、把数据保存到数据库


import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.Row
import java.util.Properties

object Demo3 {
  def main(args: Array[String]): Unit = {
    //使用Spark Session 创建表
    val spark = SparkSession.builder().master("local").appName("UnderstandSparkSession").getOrCreate()

    //从指定地址创建RDD
    val personRDD = spark.sparkContext.textFile("D:\\tmp_files\\student.txt").map(_.split("\t"))

    //通过StructType声明Schema
    val schema = StructType(
      List(
        StructField("id", IntegerType),
        StructField("name", StringType),
        StructField("age", IntegerType)))

    //把RDD映射到rowRDD
    val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1), p(2).toInt))

    val personDF = spark.createDataFrame(rowRDD, schema)

    //注册表
    personDF.createOrReplaceTempView("person")

    //执行SQL
    val df = spark.sql("select * from person ")

    //查看SqL内容
    //df.show()

    //将结果保存到mysql中
    val props = new Properties()
    props.setProperty("user", "root")
    props.setProperty("password", "123456")
    props.setProperty("driver", "com.mysql.jdbc.Driver")
    df.write.mode("overwrite").jdbc("jdbc:mysql://localhost:3306/company?serverTimezone=UTC&characterEncoding=utf-8", "student", props)
    spark.close()

  }
}

以上内容转自:
https://blog.csdn.net/weixin_43520450/article/details/106093582
作者:故明所以

到此这篇关于IDEA 开发配置SparkSQL及简单使用案例代码的文章就介绍到这了,更多相关IDEA 开发 SparkSQL内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯