如何用10行代码完成目标检测。人工智能的定义可以分为两部分,即“ 人工”和“ 智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
导语
人工智能的一个重要领域是计算机视觉。计算机视觉是计算机和软件系统能够识别和理解图像和场景的科学。计算机视觉还包括图像识别、目标检测、图像生成、图像超分辨率等多个方面。由于大量的实际用例,对象检测可能是计算机视觉最深刻的方面。
目标检测是指计算机和软件系统在图像/场景中定位目标并识别每个目标的能力。目标检测已经广泛应用于人脸检测、车辆检测、行人计数、网络图像、安全系统和无人驾驶汽车。在许多领域的实践中,对象检测也有许多方法可以使用。像其他的计算机技术一样,对象检测的广泛的创造性和惊人的用途肯定会来自计算机程序员和软件开发人员的努力。
这次要介绍的一个叫做ImageAI的项目,它一个Python库,让程序员和软件开发人员只需几行代码就可以轻松地将最先进的计算机视觉技术集成到他们现有的和新的应用程序中。
ImageAI安装工作
要使用ImageAI执行对象检测,您需要做的就是:
- 在计算机系统上安装Python
- 安装ImageAI及其依赖项
- 下载对象检测模型文件
- 运行示例代码(只有10行)
那么我们现在开始:
- 从官方Python语言网站下载并安装Python 3。
- 通过pip安装:TensorFlow,OpenCV, Keras, ImageAI
- pip3 install tensorflow
- pip3 install opencv-python
- pip3 install keras
- pip3 install imageai --upgrade
3)通过此文章中的链接下载用于对象检测的RetinaNet模型文件:
https://towardsdatascience.com/object-detection-with-10-lines-of-code-d6cb4d86f606
运行程序
太好了。我们现在已经安装了依赖项,可以编写第一个对象检测代码了。创建一个Python文件并给它起一个名字(例如,FirstDetection.py),然后将下面的代码写进去。将要检测的RetinaNet模型文件图像复制到包含python文件的文件夹中。
- from imageai.Detection import ObjectDetection
- import os
- execution_path =os.getcwd()
- detector = ObjectDetection()
- detector.setModelTypeAsRetinaNet()
- detector.setModelPath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))
- detector.loadModel()
- detections = detector.detectObjectsFromImage( input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg"))
- for eachObject in detections:
- print(eachObject["name"] , " : " ,
- eachObject["percentage_probability"] )
需要注意的是,如果你在运行遇到这个错误:
- ValueError: Unable to import backend : theano python mymodel.py
那么你可以尝试:
- import osos.environ['KERAS_BACKEND'] = 'tensorflow'from
- imageai.Detection import ObjectDetection
然后运行代码并等待结果打印在控制台中。一旦结果打印到控制台中,转到您的FirstDetection.py所在的文件夹,您将发现保存了一个新图像。看看下面的两个图像样本和检测后保存的新图像。
检测前:
检测后:
数据结果
我们可以看到程序会打印输出一些各个物体的概率数据:
- person : 55.8402955532074
- person : 53.21805477142334
- person : 69.25139427185059
- person : 76.41745209693909
- bicycle : 80.30363917350769
- person : 83.58567953109741
- person : 89.06581997871399
- truck : 63.10953497886658
- person : 69.82483863830566
- person : 77.11606621742249
- bus : 98.00949096679688
- truck : 84.02870297431946
- car : 71.98476791381836
可以看出来程序可以对图片中的以下目标进行检测:
人,自行车,卡车,汽车,公交车。
大家可以直接将自己希望检测的照片放到程序里面运行看看效果。
原理解释
现在让我们解释一下10行代码是如何工作的。
- from imageai.Detection import ObjectDetectionimport osexecution_path
- = os.getcwd()
在上面的3行代码中,我们在第一行导入了ImageAI对象检测类,在第二行导入了python os类,并定义了一个变量来保存python文件、RetinaNet模型文件和图像所在的文件夹的路径。
- detector = ObjectDetection()detector.setModelTypeAsRetinaNet()detector.setModelP
- ath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))detector.loadModel()detections =
- detector.detectObjectsFromImage(input_image=os.path.join(execution_pa
- th , "image.jpg"), output_image_path=os.path.join(execution_path ,
- "imagenew.jpg"))
在上面的代码中,我们定义对象检测类在第一线,将模型类型设置为RetinaNet在第二行,设置模型路径的路径在第三行RetinaNet模型,该模型加载到对象检测类在第四行,然后我们称为检测函数,解析输入图像的路径和输出图像路径在第五行。
- for eachObject in detections: print(eachObject["name"] , " : "
- , eachObject["percentage_probability"] )
在上面的代码中,我们在第一行迭代了detector.detectObjectsFromImage函数返回的所有结果,然后在第二行打印出图像中检测到的每个对象的模型名称和百分比概率。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
软考中级精品资料免费领
- 历年真题答案解析
- 备考技巧名师总结
- 高频考点精准押题
- 资料下载
- 历年真题
193.9 KB下载数265
191.63 KB下载数245
143.91 KB下载数1148
183.71 KB下载数642
644.84 KB下载数2756
相关文章
发现更多好内容- Java 与 Office 结合是否适合报表生成?(java office 适合报表生成吗 )
- 如何有效提升 java corn 表达式的性能?(如何优化java corn表达式的性能 )
- PHP数据类型转换常见误区解析
- 如何在 Java 中高效地创建列表?(如何在Java中创建列表)
- Java中dubbo的最佳实践案例有哪些?(java中dubbo有哪些最佳实践案例)
- 如何通过 Java 代码获取当前时间戳?(如何使用Java获取当前时间戳)
- 如何使用 Java 编写一个 circular 类?(怎么用java编写一个circular类)
- 在 Java 中如何安全地进行 SQL 拼接?(Java中怎么安全的进行SQL拼接)
- Java 的 enum 有哪些需要注意的事项?(java的enum的注意事项)
- 深入解析:如何有效提升PHP数据类型的转换效率