文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python pandas之求和运算和非空值个数统计

2024-04-02 19:55

关注

准备工作

本文用到的表格内容如下:

先来看一下原始情形:


import pandas as pd
​
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df)

result:

   分类            货品  实体店销售量  线上销售量  成本   售价
0  水果            苹果      34    234  12   45
1  家电           电视机      56    784  34  156
2  家电            冰箱      78    345  24  785
3  书籍  python从入门到放弃      25     34  13   89
4  水果            葡萄     789     56   7  398

1.非空值计数

非空值计数就是计算某一个去榆中非空数值的个数

1.1对全表进行操作

1.1.1求取每列的非空值个数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.count())

result:

分类        5
货品        5
实体店销售量    5
线上销售量     5
成本        5
售价        5
dtype: int64

1.1.2 求取每行的非空值个数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.count(axis=1))

result:

0    6
1    6
2    6
3    6
4    6
dtype: int64

1.2 对单独的一行或者一列进行操作

1.2.1 求取单独某一列的非空值个数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['分类'].count())

result:

5

1.2.2 求取单独某一行的非空值个数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[0].count())

result:

6

1.3 对多行或者多列进行操作

1.3.1 求取多列的非空值个数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[["分类", "货品"]].count())

result:

分类    5
货品    5
dtype: int64

1.3.2 求取多行的非空值个数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].count())

result:

分类        2
货品        2
实体店销售量    2
线上销售量     2
成本        2
售价        2
dtype: int64

2 sum求和

2.1对全表进行操作

2.1.1对每一列进行求和


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.sum())

result:

分类                   水果家电家电书籍水果
货品        苹果电视机冰箱python从入门到放弃葡萄
实体店销售量                      982
线上销售量                      1453
成本                           90
售价                         1473
dtype: object

可以看到,字符串类型的求和直接是字符串拼接,数字类型就正常的数学运算

2.1.2 对每一行进行求和


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.sum(axis=1))

result:

0     325
1    1030
2    1232
3     161
4    1250
dtype: int64

先看运行结果,我们可以看到,每一行求和的时候直接忽略文本字符类型,只对数字类型进行求和。就比如第一行的数据

   分类            货品  实体店销售量  线上销售量  成本   售价
0  水果            苹果      34    234  12   45

上面的325=34+234+12+45,,其他的行也是如此

2.2 对单独的一行或者一列进行操作

2.2.1 对某一列进行求和


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['实体店销售量'].sum())

result:

982

2.2.2 对某一行进行求和


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].sum())

result:

分类         水果
货品         苹果
实体店销售量     34
线上销售量     234
成本         12
售价         45
dtype: object

当然,单独一行去求和似乎没卵用

2.3 对多行或者多列进行操作

2.3.1 对多列进行求和


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['实体店销售量', "线上销售量"]].sum())

result:

实体店销售量     982
线上销售量     1453
dtype: int64

2.3.2 对多行进行求和


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].sum())

result:

分类         水果家电
货品        苹果电视机
实体店销售量       90
线上销售量      1018
成本           46
售价          201
dtype: object

总结

到此这篇关于Python pandas之求和运算和非空值个数统计的文章就介绍到这了,更多相关pandas求和运算和非空值个数内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯