文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python&Matla实现模拟退火法的示例代码

2024-04-02 19:55

关注

1 Python实现

1.1 源码实现

我在前面已经给出了模拟退火法的完整知识点和源码实现:智能优化算法—蚁群算法(Python实现)

模拟退火蒙特卡洛实验一样,全局随机,由于没有自适应的过程(例如向最优靠近、权重梯度下降等),对于复杂函数寻优,很难会找到最优解,都是近似最优解;然而像蝙蝠算法粒子群算法等有向最优逼近且通过最优最差调整参数的步骤,虽然对于下图函数易陷入局部最优,但是寻优精度相对较高。如果理解这段话应该就明白了为什么神经网络训练前如果初步寻优一组较好的网络参数,会使训练效果提高很多,也会更快达到误差精度。

1.2 sko.SA 实现

#===========1导包================
import matplotlib.pyplot as plt
import pandas as pd
from sko.SA import SA
 
#============2定义问题===============
fun = lambda x: x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2
 
#=========3运行模拟退火算法===========
sa = SA(func=fun, x0=[1, 1, 1], T_max=1, T_min=1e-9, L=300, max_stay_counter=150)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y', best_y)
 
#=======4画出结果=======
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()
 
 
 
 
#scikit-opt 还提供了三种模拟退火流派: Fast, Boltzmann, Cauchy.
 
#===========1.1 Fast Simulated Annealing=====================
from sko.SA import SAFast
 
sa_fast = SAFast(func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150)
sa_fast.run()
print('Fast Simulated Annealing: best_x is ', sa_fast.best_x, 'best_y is ', sa_fast.best_y)
 
#===========1.2 Fast Simulated Annealing with bounds=====================
from sko.SA import SAFast
 
sa_fast = SAFast(func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150,
                 lb=[-1, 1, -1], ub=[2, 3, 4])
sa_fast.run()
print('Fast Simulated Annealing with bounds: best_x is ', sa_fast.best_x, 'best_y is ', sa_fast.best_y)
 
#===========2.1 Boltzmann Simulated Annealing====================
from sko.SA import SABoltzmann
 
sa_boltzmann = SABoltzmann(func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150)
sa_boltzmann.run()
print('Boltzmann Simulated Annealing: best_x is ', sa_boltzmann.best_x, 'best_y is ', sa_fast.best_y)
 
#===========2.2 Boltzmann Simulated Annealing with bounds====================
from sko.SA import SABoltzmann
 
sa_boltzmann = SABoltzmann(func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150,
                           lb=-1, ub=[2, 3, 4])
sa_boltzmann.run()
print('Boltzmann Simulated Annealing with bounds: best_x is ', sa_boltzmann.best_x, 'best_y is ', sa_fast.best_y)
 
#==================3.1 Cauchy Simulated Annealing==================
from sko.SA import SACauchy
 
sa_cauchy = SACauchy(func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150)
sa_cauchy.run()
print('Cauchy Simulated Annealing: best_x is ', sa_cauchy.best_x, 'best_y is ', sa_cauchy.best_y)
 
#==================3.2 Cauchy Simulated Annealing with bounds==================
from sko.SA import SACauchy
 
sa_cauchy = SACauchy(func=demo_func, x0=[1, 1, 1], T_max=1, T_min=1e-9, q=0.99, L=300, max_stay_counter=150,
                     lb=[-1, 1, -1], ub=[2, 3, 4])
sa_cauchy.run()
print('Cauchy Simulated Annealing with bounds: best_x is ', sa_cauchy.best_x, 'best_y is ', sa_cauchy.best_y)

2 Matlab实现 

2.1 模拟退火法

clear
clc
T=1000; %初始化温度值
T_min=1; %设置温度下界
alpha=0.99; %温度的下降率
num=1000; %颗粒总数
n=2; %自变量个数
sub=[-5,-5]; %自变量下限
up=[5,5]; %自变量上限
tu
for i=1:num
for j=1:n
x(i,j)=(up(j)-sub(j))*rand+sub(j);
    end
    fx(i,1)=fun(x(i,1),x(i,2));
end
 
%以最小化为例
[bestf,a]=min(fx);
bestx=x(a,:);
trace(1)=bestf;
while(T>T_min)
for i=1:num
for j=1:n
            xx(i,j)=(up(j)-sub(j))*rand+sub(j);
        end
        ff(i,1)=fun(xx(i,1),xx(i,2));
        delta=ff(i,1)-fx(i,1);
if delta<0
            fx(i,1)=ff(i,1);
x(i,:)=xx(i,:);
else
            P=exp(-delta/T);
if P>rand
                fx(i,1)=ff(i,1);
x(i,:)=xx(i,:);
            end
        end  
    end
if min(fx)<bestf
        [bestf,a]=min(fx);
        bestx=x(a,:);
    end
    trace=[trace;bestf];
    T=T*alpha;
end
disp('最优解为:')
disp(bestx)
disp('最优值为:')
disp(bestf)
hold on
plot3(bestx(1),bestx(2),bestf,'ro','LineWidth',5)
figure
plot(trace)
xlabel('迭代次数')
ylabel('函数值')
title('模拟退火算法')
legend('最优值')
function z=fun(x,y)
z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20;
function tu
[x,y] = meshgrid(-5:0.1:5,-5:0.1:5);
z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20;
figure
mesh(x,y,z)%建一个网格图,该网格图为三维曲面,有实色边颜色,无面颜色
hold on
xlabel('x')
ylabel('y')
zlabel('z')
title('z =  x^2 + y^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20')

这里有一个待尝试的想法,先用蒙特卡洛/模拟退火迭代几次全局去找最优的区域,再通过其他有向最优逼近过程的算法再进一步寻优,或许会很大程度降低产生局部最优解的概率。

下面是模拟退火和蒙特卡洛对上述函数寻优的程序,迭代次数已设为一致,可以思考下两种程序写法的效率、共同点、缺点。理论研究讲究结果好,实际应用既要保证结果好也要保证程序运算效率。

2.2 蒙特卡诺法 

clear
clc
num=689000; %颗粒总数
n=2; %自变量个数
sub=[-5,-5]; %自变量下限
up=[5,5]; %自变量上限
tu
x=zeros(num,n);
fx=zeros(num,1);
for i=1:num
for j=1:n
x(i,j)=(up(j)-sub(j))*rand+sub(j);
    end
    fx(i,1)=fun(x(i,1),x(i,2));
end
 
[bestf,a]=min(fx);
bestx=x(a,:);
 
disp('最优解为:')
disp(bestx)
disp('最优值为:')
disp(bestf)
hold on
plot3(bestx(1),bestx(2),bestf,'ro','LineWidth',5)

效果确实值得商榷。

到此这篇关于Python&Matla实现模拟退火法的示例代码的文章就介绍到这了,更多相关Python&Matla 模拟退火法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     801人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     348人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     311人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     432人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     220人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯