文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

C语言驱动开发内核枚举IoTimer定时器解析

2022-11-13 19:02

关注

正文

今天继续分享内核枚举系列知识,这次我们来学习如何通过代码的方式枚举内核IoTimer定时器,内核定时器其实就是在内核中实现的时钟,该定时器的枚举非常简单,因为在IoInitializeTimer初始化部分就可以找到IopTimerQueueHead地址,该变量内存储的就是定时器的链表头部。枚举IO定时器的案例并不多见,即便有也是无法使用过时的,此教程学到肯定就是赚到了。

枚举Io定时器过程

这里解释一下为什么要找IoInitializeTimer这个函数他是一个初始化函数,既然是初始化里面一定会涉及到链表的存储问题,找到他就能找到定时器链表基址,该函数的定义如下。

NTSTATUS 
  IoInitializeTimer(
    IN PDEVICE_OBJECT  DeviceObject,     // 设备对象指针
    IN PIO_TIMER_ROUTINE  TimerRoutine,  // 定时器例程
    IN PVOID  Context                    // 传给定时器例程的函数
    );

接着我们需要得到IO定时器的结构定义,在DEVICE_OBJECT设备对象指针中存在一个Timer属性。

lyshark.com: kd> dt _DEVICE_OBJECT
ntdll!_DEVICE_OBJECT
   +0x000 Type             : Int2B
   +0x002 Size             : Uint2B
   +0x004 ReferenceCount   : Int4B
   +0x008 DriverObject     : Ptr64 _DRIVER_OBJECT
   +0x010 NextDevice       : Ptr64 _DEVICE_OBJECT
   +0x018 AttachedDevice   : Ptr64 _DEVICE_OBJECT
   +0x020 CurrentIrp       : Ptr64 _IRP
   +0x028 Timer            : Ptr64 _IO_TIMER
   +0x030 Flags            : Uint4B
   +0x034 Characteristics  : Uint4B
   +0x038 Vpb              : Ptr64 _VPB
   +0x040 DeviceExtension  : Ptr64 Void
   +0x048 DeviceType       : Uint4B
   +0x04c StackSize        : Char
   +0x050 Queue            : <anonymous-tag>
   +0x098 AlignmentRequirement : Uint4B
   +0x0a0 DeviceQueue      : _KDEVICE_QUEUE
   +0x0c8 Dpc              : _KDPC
   +0x108 ActiveThreadCount : Uint4B
   +0x110 SecurityDescriptor : Ptr64 Void
   +0x118 DeviceLock       : _KEVENT
   +0x130 SectorSize       : Uint2B
   +0x132 Spare1           : Uint2B
   +0x138 DeviceObjectExtension : Ptr64 _DEVOBJ_EXTENSION
   +0x140 Reserved         : Ptr64 Void

这里的这个+0x028 Timer定时器是一个结构体_IO_TIMER其就是IO定时器的所需结构体。

lyshark.com: kd> dt _IO_TIMER
ntdll!_IO_TIMER
   +0x000 Type             : Int2B
   +0x002 TimerFlag        : Int2B
   +0x008 TimerList        : _LIST_ENTRY
   +0x018 TimerRoutine     : Ptr64     void 
   +0x020 Context          : Ptr64 Void
   +0x028 DeviceObject     : Ptr64 _DEVICE_OBJECT

如上方的基础知识有了也就够了,接着就是实际开发部分,首先我们需要编写一个GetIoInitializeTimerAddress()函数,让该函数可以定位到IoInitializeTimer所在内核中的基地址上面,具体实现调用代码如下所示。

GetIoInitializeTimerAddress()函数

#include <ntifs.h>
// 得到IoInitializeTimer基址
// By: LyShark 内核开发系列教程
PVOID GetIoInitializeTimerAddress()
{
	PVOID VariableAddress = 0;
	UNICODE_STRING uioiTime = { 0 };
	RtlInitUnicodeString(&uioiTime, L"IoInitializeTimer");
	VariableAddress = (PVOID)MmGetSystemRoutineAddress(&uioiTime);
	if (VariableAddress != 0)
	{
		return VariableAddress;
	}
	return 0;
}
VOID UnDriver(PDRIVER_OBJECT driver)
{
	DbgPrint(("Uninstall Driver Is OK \n"));
}
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	DbgPrint(("hello lyshark.com \n"));
	// 得到基址
	PUCHAR IoInitializeTimer = GetIoInitializeTimerAddress();
	DbgPrint("IoInitializeTimer Address = %p \n", IoInitializeTimer);
	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

运行这个驱动程序,然后对比下是否一致:

接着我们在反汇编代码中寻找IoTimerQueueHead,此处在LyShark系统内这个偏移位置是nt!IoInitializeTimer+0x5d 具体输出位置如下。

lyshark.com: kd> uf IoInitializeTimer
nt!IoInitializeTimer+0x5d:
fffff805`74b85bed 488d5008        lea     rdx,[rax+8]
fffff805`74b85bf1 48897018        mov     qword ptr [rax+18h],rsi
fffff805`74b85bf5 4c8d054475e0ff  lea     r8,[nt!IopTimerLock (fffff805`7498d140)]
fffff805`74b85bfc 48897820        mov     qword ptr [rax+20h],rdi
fffff805`74b85c00 488d0dd9ddcdff  lea     rcx,[nt!IopTimerQueueHead (fffff805`748639e0)]
fffff805`74b85c07 e8141e98ff      call    nt!ExInterlockedInsertTailList (fffff805`74507a20)
fffff805`74b85c0c 33c0            xor     eax,eax

在WinDBG中标注出颜色lea rcx,[nt!IopTimerQueueHead (fffff805748639e0)]更容易看到。

接着就是通过代码实现对此处的定位,定位我们就采用特征码搜索的方式,如下代码是特征搜索部分。

特征搜索部分

#include <ntifs.h>
// 得到IoInitializeTimer基址
// By: LyShark 内核开发系列教程
PVOID GetIoInitializeTimerAddress()
{
	PVOID VariableAddress = 0;
	UNICODE_STRING uioiTime = { 0 };
	RtlInitUnicodeString(&uioiTime, L"IoInitializeTimer");
	VariableAddress = (PVOID)MmGetSystemRoutineAddress(&uioiTime);
	if (VariableAddress != 0)
	{
		return VariableAddress;
	}
	return 0;
}
VOID UnDriver(PDRIVER_OBJECT driver)
{
	DbgPrint(("Uninstall Driver Is OK \n"));
}
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
	DbgPrint(("hello lyshark.com \n"));
	// 得到基址
	PUCHAR IoInitializeTimer = GetIoInitializeTimerAddress();
	DbgPrint("IoInitializeTimer Address = %p \n", IoInitializeTimer);
	INT32 iOffset = 0;
	PLIST_ENTRY IoTimerQueueHead = NULL;
	PUCHAR StartSearchAddress = IoInitializeTimer;
	PUCHAR EndSearchAddress = IoInitializeTimer + 0xFF;
	UCHAR v1 = 0, v2 = 0, v3 = 0;
	for (PUCHAR i = StartSearchAddress; i < EndSearchAddress; i++)
	{
		if (MmIsAddressValid(i) && MmIsAddressValid(i + 1) && MmIsAddressValid(i + 2))
		{
			v1 = *i;
			v2 = *(i + 1);
			v3 = *(i + 2);
			// 三个特征码
			if (v1 == 0x48 && v2 == 0x8d && v3 == 0x0d)
			{
				memcpy(&iOffset, i + 3, 4);
				IoTimerQueueHead = (PLIST_ENTRY)(iOffset + (ULONG64)i + 7);
				DbgPrint("IoTimerQueueHead = %p \n", IoTimerQueueHead);
				break;
			}
		}
	}
	Driver->DriverUnload = UnDriver;
	return STATUS_SUCCESS;
}

搜索三个特征码v1 == 0x48 && v2 == 0x8d && v3 == 0x0d从而得到内存位置,运行驱动对比下。

IO_TIMER结构体定义

最后一步就是枚举部分,我们需要前面提到的IO_TIMER结构体定义。

// By: LyShark 内核开发系列教程
// https://www.cnblogs.com/LyShark/articles/16784393.html
#include <ntddk.h>
#include <ntstrsafe.h>
typedef struct _IO_TIMER
{
  INT16        Type;
  INT16        TimerFlag;
  LONG32       Unknown;
  LIST_ENTRY   TimerList;
  PVOID        TimerRoutine;
  PVOID        Context;
  PVOID        DeviceObject;
}IO_TIMER, *PIO_TIMER;
// 得到IoInitializeTimer基址
PVOID GetIoInitializeTimerAddress()
{
  PVOID VariableAddress = 0;
  UNICODE_STRING uioiTime = { 0 };
  RtlInitUnicodeString(&uioiTime, L"IoInitializeTimer");
  VariableAddress = (PVOID)MmGetSystemRoutineAddress(&uioiTime);
  if (VariableAddress != 0)
  {
    return VariableAddress;
  }
  return 0;
}
VOID UnDriver(PDRIVER_OBJECT driver)
{
  DbgPrint("卸载完成... \n");
}
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
  DbgPrint(("hello lyshark.com \n"));
  // 得到基址
  PUCHAR IoInitializeTimer = GetIoInitializeTimerAddress();
  DbgPrint("IoInitializeTimer Address = %p \n", IoInitializeTimer);
  // 搜索IoTimerQueueHead地址
  
  INT32 iOffset = 0;
  PLIST_ENTRY IoTimerQueueHead = NULL;
  PUCHAR StartSearchAddress = IoInitializeTimer;
  PUCHAR EndSearchAddress = IoInitializeTimer + 0xFF;
  UCHAR v1 = 0, v2 = 0, v3 = 0;
  for (PUCHAR i = StartSearchAddress; i < EndSearchAddress; i++)
  {
    if (MmIsAddressValid(i) && MmIsAddressValid(i + 1) && MmIsAddressValid(i + 2))
    {
      v1 = *i;
      v2 = *(i + 1);
      v3 = *(i + 2);
      // fffff806`349963e0 48 8d 0d 99 f6 cd ff  lea rcx,[nt!IopTimerQueueHead (fffff806`34675a80)]
      if (v1 == 0x48 && v2 == 0x8d && v3 == 0x0d)
      {
        memcpy(&iOffset, i + 3, 4);
        IoTimerQueueHead = (PLIST_ENTRY)(iOffset + (ULONG64)i + 7);
        DbgPrint("IoTimerQueueHead = %p \n", IoTimerQueueHead);
        break;
      }
    }
  }
  // 枚举列表
  KIRQL OldIrql;
  // 获得特权级
  OldIrql = KeRaiseIrqlToDpcLevel();
  if (IoTimerQueueHead && MmIsAddressValid((PVOID)IoTimerQueueHead))
  {
    PLIST_ENTRY NextEntry = IoTimerQueueHead->Flink;
    while (MmIsAddressValid(NextEntry) && NextEntry != (PLIST_ENTRY)IoTimerQueueHead)
    {
      PIO_TIMER Timer = CONTAINING_RECORD(NextEntry, IO_TIMER, TimerList);
      if (Timer && MmIsAddressValid(Timer))
      {
        DbgPrint("IO对象地址: %p \n", Timer);
      }
      NextEntry = NextEntry->Flink;
    }
  }
  // 恢复特权级
  KeLowerIrql(OldIrql);
  Driver->DriverUnload = UnDriver;
  return STATUS_SUCCESS;
}

运行这段源代码,并可得到以下输出,由于没有IO定时器所以输出结果是空的:

至此IO定时器的枚举就介绍完了,在教程中你已经学会了使用特征码定位这门技术,相信你完全可以输出内核中想要得到的任何结构体。

以上就是C语言驱动开发内核枚举IoTimer定时器解析的详细内容,更多关于C语言 内核枚举IoTimer定时器的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯