文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

如何理解Kubeflow

2023-06-19 10:21

关注

本篇文章为大家展示了如何理解Kubeflow,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

提起机器学习,尤其是深度学习,大家可能会对诸如Tensorflow,Pytorch,Caffee的工具耳熟能详。但其实在实际的机器学习的生命周期中,训练模型(上述工具主要解决的问题)只是整个机器学习生命周期的很小一部分。

如何理解Kubeflow

数据如何准备?模型训练好了如何部署?如何上云?如何上规模Scale?等等挑战随之而来。随着机器学习的广泛应用,许多工具响应而生,以解决模型部署的问题。例如:

我们今天就来看一看Google推出的Kubeflow。Kubeflow,顾名思义,是Kubernetes + Tensorflow,是Google为了支持自家的Tensorflow的部署而开发出的开源平台,当然它同时也支持Pytorch和基于Python的SKlearn等其它机器学习的引擎。与其它的产品相比较,因为是基于强大的Kubernetes之上构建,Kubeflow的未来和生态系统更值得看好。

Kukeflow主要提供在生产系统中简单的大规模部署机器学习的模型的功能,利用Kubernetes,它可以做到:

Kubeflow是基于K8S的机器学习工具集,它提供一系列的脚本和配置,来管理K8S的组件。Kubeflow基于K8s的微服务架构,其核心组件包括:

基于K8s,扩展其它能力非常方便,Kubeflow提供的其它扩展包括:

如何理解Kubeflow

我们可以看出,基于K8s,Kubeflow利用已有的生态系统来构微服务,可以说充分体现了微服务的高度扩展性。

我们下面就来看看Kubeflow是如何整合了这些组件,来提供机器学习模型部署的功能的。

JupyterHub

Jupyter Notebook是深受数据科学家喜爱的开发工具,它提供出色的交互和实时反馈。JupyterHub提供一个使用Juypter Notebook的多用户使用环境,它包含以下组件:

如何理解Kubeflow

运行以下的命令通过port-forward访问jyputer hub

kubectl port-forward tf-hub-0 8000:8000 -n <ns>

第一次访问,可以创建一个notebook的实例。创建的实例可以选择不同的镜像,可以实现对GPU的支持。同时需要选择配置资源的参数。

创建好的jupyterlab (JupyterLab是新一代的Juypter Notebook)的界面如下:

如何理解Kubeflow

不过我还是比较习惯传统的notebook界面。Lab的优点是可以开Console,这个不错。(Lab也支持打开传统的notebook界面)

Kubeflow在notebook镜像中集成了Tensorboard,可以方便的对tensflow的程序进行可视化和调试。

在jyputerlab的Console中,输入下面的命令开启Tensorboard:

tensorboard --logdir <logdir>
$ tensorboard --logdir /tmp/logs2018-09-15 20:30:21.186275: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMAW0915 20:30:21.204606 Reloader tf_logging.py:121] Found more than one graph event per run, or there was a metagraph containing a graph_def, as well as one or more graph events.  Overwriting the graph with the newest event.W0915 20:30:21.204929 Reloader tf_logging.py:121] Found more than one metagraph event per run. Overwriting the metagraph with the newest event.W0915 20:30:21.205569 Reloader tf_logging.py:121] Found more than one graph event per run, or there was a metagraph containing a graph_def, as well as one or more graph events.  Overwriting the graph with the newest event.TensorBoard 1.8.0 at http://jupyter-admin:6006 (Press CTRL+C to quit)

访问tensorboard也需要port-forward,这里user是创建notebook的用户名,kubeflow为为一个实例创建一个Pod。缺省的tensorboard的端口是6006。

kubectl port-forward jupyter-<user> 6006:6006 -n <ns>

如何理解Kubeflow

Tensorflow 训练

为了支持在Kubernete中进行分布式的Tensorflow的训练,Kubeflow开发了K8s的CDR,TFJob (tf-operater)。

如何理解Kubeflow

如上图所示,分布式的Tensorflow支持0到多个以下的进程:

下面的yaml配置是Kubeflow提供的一个CNN Benchmarks的例子。

---apiVersion: kubeflow.org/v1alpha2kind: TFJobmetadata:  labels:    ksonnet.io/component: mycnnjob  name: mycnnjob  namespace: kubeflowspec:  tfReplicaSpecs:    Ps:      template:        spec:          containers:          - args:            - python            - tf_cnn_benchmarks.py            - --batch_size=32            - --model=resnet50            - --variable_update=parameter_server            - --flush_stdout=true            - --num_gpus=1            - --local_parameter_device=cpu            - --device=cpu            - --data_format=NHWC            image: gcr.io/kubeflow/tf-benchmarks-cpu:v20171202-bdab599-dirty-284af3            name: tensorflow            workingDir: /opt/tf-benchmarks/scripts/tf_cnn_benchmarks          restartPolicy: OnFailure      tfReplicaType: PS    Worker:      replicas: 1      template:        spec:          containers:          - args:            - python            - tf_cnn_benchmarks.py            - --batch_size=32            - --model=resnet50            - --variable_update=parameter_server            - --flush_stdout=true            - --num_gpus=1            - --local_parameter_device=cpu            - --device=cpu            - --data_format=NHWC            image: gcr.io/kubeflow/tf-benchmarks-cpu:v20171202-bdab599-dirty-284af3            name: tensorflow            workingDir: /opt/tf-benchmarks/scripts/tf_cnn_benchmarks          restartPolicy: OnFailure

在Kubeflow中运行这个例子,会创建一个TFjob。可以使用Kubectl来管理,监控这个Job的运行。

# 监控当前状态kubectl get -o yaml tfjobs <jobname> -n <ns># 查看事件kubectl describe tfjobs <jobname> -n <ns># 查看运行日志kubectl logs mycnnjob-[ps|worker]-0 -n <ns>

Tensoflow 服务(Serving)

Serving就是指当模型训练好了以后,提供一个稳定的接口,供用户调用,来应用该模型。

基于Tensorflow的Serving功能,Kubeflow提供一个Tensorflow模型服务器(model server)的Ksonnet模块来提供模型服务的功能。

如何理解Kubeflow

模型部署好了之后,通过API Gateway暴露的endpoint来访问和使用模型。

http://<ambassadorEndpoint>/seldon/<deploymentName>/api/v0.1/predictions

如何理解Kubeflow

机器学习同样可以抽象为一个或者多个工作流。Kubeflow继承了Argo来作为其机器学习的工作流引擎。

可以通过Kubectl proxy来访问Kubeflow中的Argo UI。 http://localhost:8001/api/v1/namespaces/kubeflow/services/argo-ui/proxy/workflows

现阶段,并没有实际的Argo工作流来运行机器学习的例子。但是Kubeflow在使用Argo来做自己的CICD系统。

如何理解Kubeflow

Pychyderm是容器化的数据池,提供像git一样的数据版本系统管理,并提供一个数据流水线,来构建你的数据科学项目。

Kubeflow利用Google自家的两大利器Kubernete和Tensorflow,强强联手,来提供一个数据科学的工具箱和部署平台。我们可以看到他有很多优点:

同时我们也可以看到Kubeflow的一些问题:

当然,kubeflow的当前版本是0.2.5,我相信,未来Kubeflow会有很好的发展。

上述内容就是如何理解Kubeflow,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注编程网行业资讯频道。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯