文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python中itertools库的四个函数介绍

2024-04-02 19:55

关注

1. 引言

在Python开发中,​​itertools​​库经常被忽视,实际上该库中抱恨了一些非常棒的函数,特别是用于处于数据流的函数。在本文中,我们将讨论该库中的十分使用的几个函数,并重点介绍什么时候我们应该考虑使用它们。
闲话少说,我们直接开始吧!

2. accumulate() 函数

第三方库​​itertools​​提供的函数​​accumulate()​​,可以帮助我们对数据流执行累积操作。换句话说,假设我们有一个数据列表[a,b,c,d,e]和一个运算f,那么函数​​accumulate()​​可以帮助我们计算​​f(a,b)​​,​​f(f(a,b),c)​​,​​f(f(f(a,b),c),d)​​,等等。
文字有点不直观,那我们来举个累加的栗子吧!

样例代码如下:

import itertools
data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]

res = itertools.accumulate(data, lambda x,y:x+y)
print(list(res))
# [3, 7, 13, 15, 16, 25, 25, 32, 37, 45]

上述函数​​accumulate()​​的作用是:先把3和4相加,然后得到7,再和6相加,得到另一个值,依此类推。

需要注意的是:如果要执行给定3个或更多值的累计操作,则不允许使用该函数,因为accumulate()只接受迭代器,迭代器每次调用next()返回至多1个元素。

3. compress() 函数

函数​​compress()​​可以根据我们的喜好来过滤内容。与函数​​filter()​​函数不同,函数​​compress()​​需要传入相应的标志位来决定是否应该保留每个值。

举个例子会更加直观,相关样例代码如下:

import itertools
data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
selector = [1, 0, 0, 0, 1, 1, 0, 1, 1, 0]
res = itertools.compress(data, selector)
print(list(res))
# [3, 1, 9, 7, 5]

在上面的示例中,如果数据是奇数,则选择器将为 1,否则为 0。因此,函数​​compress()​​ 操作的结果将只是保留原始数据中的奇数。

4. groupby() 函数

在许多情况下,我们会在 Python 中以随机顺序获得一个元组列表,假如我们希望按值对它们进行分组。此时是函数​​ groupby()​​ 发挥作用的完美场景!

函数​​ groupby()​​ 将接受一个可迭代的参数和一个返回值的函数,然后它将按函数返回的值对元组列表进行分组。

例如,我们想按国家对以下城市进行分组:

import itertools

data = [('New York', 'US'), ("Shanghai", "China"),
("LA", 'US'),("Chongqing", "China")]

for city, group in itertools.groupby(sorted(data, key=lambda x: x[1]), lambda x: x[1]):
for i in group:
print("%s is in %s." % (i[0], city))
print("")

# Shanghai is in China.
# Chongqing is in China.

# New York is in US.
# LA is in US.

5. 排列组合操作

排列组合可能是 ​​itertools​​库中最令人惊叹的函数之一,它提供了排列组合运算符!
我们唯一需要做的就是将正确的关键字与输出元组的长度一起传递给相应的函数,

如下例所示:

import itertools
data = [3, 4, 6]

com_res = itertools.combinations(data, 2)
print(list(com_res))
# [(3, 4), (3, 6), (4, 6)]

com_res = itertools.permutations(data, 2)
print(list(com_res))
# [(3, 4), (3, 6), (4, 3), (4, 6), (6, 3), (6, 4)]

com_without_replacement_res = itertools.combinations_with_replacement(data, 2)
print(list(com_without_replacement_res))
# [(3, 3), (3, 4), (3, 6), (4, 4), (4, 6), (6, 6)]

product_res = itertools.product(data, data)
print(list(product_res))
# [(3, 3), (3, 4), (3, 6), (4, 3), (4, 4), (4, 6), (6, 3), (6, 4), (6, 6)]

6 总结

库​​itertools​​对大多数人来说,是一个未被充分利用甚至很少听到的库,但它确实包含一些非常好用的函数。这些函数通常可以帮助我们将代码行数减少到仅一行,使我们的代码看起来更加简洁优雅!

到此这篇关于Python中itertools库的四个函数介绍的文章就介绍到这了,更多相关Python中itertools库内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯